Skip to main content

Advertisement

Log in

Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Expression of human epidermal growth factor receptor type 2 (HER2) in malignant tumours possesses well-documented prognostic and predictive value. Non-invasive imaging of expression can provide valuable diagnostic information, thereby influencing patient management. Previously, we reported a phage display selection of a small (about 7 kDa) protein, the Affibody molecule ZHER2:342, which binds HER2 with subnanomolar affinity, and demonstrated the feasibility of targeting of HER2-expressing xenografts using radioiodinated ZHER2:342. The goal of this study was to develop a method for 99mTc labelling of ZHER2:342 using the MAG3 chelator, which was incorporated into ZHER2:342 using peptide synthesis, and evaluate the targeting properties of the labelled conjugate.

Methods

MAG3-ZHER2:342 was assembled using Fmoc/tBu solid phase peptide synthesis. Biochemical characterisation of the agent was performed using RP-HPLC, ESI-MS, biosensor studies and circular dichroism. A procedure for 99mTc labelling in the presence of sodium/potassium tartrate was established. Tumour targeting was evaluated by biodistribution study and gamma camera imaging in xenograft-bearing mice. Biodistribution of 99mTc-MAG3-ZHER2:342 and 125I-para-iodobenzoate -ZHER2:342 was compared 6 h p.i.

Results

Synthetic MAG3-ZHER2:342 possessed an affinity of 0.2 nM for HER2 receptors. The peptide was labelled with 99mTc with an efficiency of about 75–80%. Labelled 99mTc-MAG3-ZHER2:342 retained capacity to bind specifically HER2-expressing SKOV-3 cells in vitro. 99mTc-MAG3-ZHER2:342 showed specific tumour targeting with a contrast similar to a radioiodinated analogue in mice bearing LS174T xenografts. Gamma camera imaging demonstrated clear and specific visualisation of HER2 expression.

Conclusion

Incorporation of a mercaptoacetyl-containing chelating sequence during chemical synthesis enabled site-specific 99mTc labelling of the ZHER2:342 Affibody molecule with preserved targeting capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aunoble B, Sanches R, Didier E, Bignon YJ. Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer. Int J Oncol 2000;16:567–76.

    CAS  PubMed  Google Scholar 

  2. Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 2004;90:2344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gardmark T, Wester K, de la Torre M, Carlsson J, Malmstrom PU. Analysis of HER2 expression in primary urinary bladder carcinoma and corresponding metastases. BJU Int 2005;95:982–6.

    Article  CAS  PubMed  Google Scholar 

  4. Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, et al. c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994;330:1260–6.

    Article  CAS  PubMed  Google Scholar 

  5. Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, et al. erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 1998;90:1361–70.

    Article  CAS  PubMed  Google Scholar 

  6. Allred DC, Clark GM, Elledge R, Fugua SA, Brown RW, Chamness GC, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 1993;85:200–6.

    Article  CAS  PubMed  Google Scholar 

  7. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Save-Soderborgh J, Anbazhagan R, et al. Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol 1992;10:1049–56.

    Article  CAS  PubMed  Google Scholar 

  8. Giai M, Roagna R, Ponzone R, De Bortoli M, Dati C, Sismondi P. Prognostic and predictive relevance of c-erbB-2 and ras expression in node positive and negative breast cancer. Anticancer Res 1994;14:1441–50.

    CAS  PubMed  Google Scholar 

  9. Tetu B, Brisson J. Prognostic significance of HER-2/neu oncoprotein expression in node-positive breast cancer: The influence of the pattern of immunostaining and adjuvant therapy. Cancer 1994;73:2359–65.

    Article  CAS  PubMed  Google Scholar 

  10. Bast RC Jr, Ravdin P, Hayes DF, Bates S, Fritsche H Jr, Jessup JM, et al. American Society of Clinical Oncology Tumor Markers Expert Panel. 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001;19:1865–78.

    Article  PubMed  Google Scholar 

  11. Behr TM, Behe M, Wormann B. Trastuzumab and breast cancer. N Engl J Med 2001;345:995–6.

    Article  CAS  PubMed  Google Scholar 

  12. De Santes K, Slamon D, Anderson SK, Shepard M, Fendly B, Maneval D, et al. Radiolabeled antibody targeting of the HER-2/neu oncoprotein. Cancer Res 1992;52:1916–23.

    PubMed  Google Scholar 

  13. Xu FJ, Yu YH, Bae DS, Zhao XG, Slade SK, Boyer CM, et al. Radioiodinated antibody targeting of the HER-2/neu oncoprotein. Nucl Med Biol 1997;24:451–9.

    Article  CAS  PubMed  Google Scholar 

  14. Zalutsky MR, Xu FJ, Yu Y, Foulon CF, Zhao XG, Slade SK, et al. Radioiodinated antibody targeting of the HER-2/neu oncoprotein: effects of labeling method on cellular processing and tissue distribution. Nucl Med Biol 1999;26:781–90.

    Article  CAS  PubMed  Google Scholar 

  15. Tsai SW, Sun Y, Williams LE, Raubitschek AA, Wu AM, Shively JE. Biodistribution and radioimmunotherapy of human breast cancer xenografts with radiometal-labeled DOTA conjugated anti-HER2/neu antibody 4D5. Bioconjug Chem 2000;11:327–34.

    Article  CAS  PubMed  Google Scholar 

  16. Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.

    Article  CAS  PubMed  Google Scholar 

  17. Lub-de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, et al. Preclinical characterisation of 111In-DTPA-trastuzumab. Br J Pharmacol 2004;143:99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Persson M, Gedda L, Jensen HJ, Lundqvist H, Malmström P-U, Tolmachev V. Astatinated trastuzumab, a putative agent for radionuclide immunotherapy of ErbB2 expressing tumors. Oncol Rep 2006;15:673–80.

    CAS  PubMed  Google Scholar 

  19. Persson M, Tolmachev V, Andersson K, Gedda L, Sandström M, Carlsson J. [177Lu]pertuzumab. Experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.

    Article  CAS  PubMed  Google Scholar 

  20. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 2002;13:603–8.

    Article  CAS  PubMed  Google Scholar 

  21. Britz-Cunningham SH, Adelstein J. Molecular targeting with radionuclides: state of the science. J Nucl Med 2003;44:1945–61.

    CAS  PubMed  Google Scholar 

  22. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS, Stafford WF 3rd, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 1993;53:4026–34.

    CAS  PubMed  Google Scholar 

  23. Olafsen T, Tan GJ, Cheung CW, Yazaki PJ, Park JM, Shively JE, et al. Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel 2004;17:315–23.

    Article  CAS  PubMed  Google Scholar 

  24. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701–6.

    Article  CAS  PubMed  Google Scholar 

  25. Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ, et al. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastusumab (Herceptin) Fab fragments. Nucl Med Biol 2005;32:51–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PÅ. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1997;15:772–7.

    Article  CAS  PubMed  Google Scholar 

  27. Nord K, Gunneriusson E, Uhlén M, Nygren PÅ. Ligands selected from combinatorial libraries of protein A for use in affinity capture of apolipoprotein A-1M and taq DNA polymerase. J Biotechnol 2000;80:45–54.

    Article  CAS  PubMed  Google Scholar 

  28. Rönnmark J, Hansson M, Nguyen T, Uhlén M, Robert A, Ståhl S, et al. Construction and characterization of affibody-Fc chimeras produced in Escherichia coli. J Immunol Methods 2002;261:199–211.

    Article  PubMed  Google Scholar 

  29. Rönnmark J, Kampf C, Asplund A, Höiden-Guthenberg I, Wester K, Ponten F, et al. Affibody-beta-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J Immunol Methods 2003;281:149–60.

    Article  PubMed  Google Scholar 

  30. Renberg B, Shiroyama I, Engfeldt T, Nygren PK, Karlström AE Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules. Anal Biochem 2005;341:334–43.

    Article  CAS  PubMed  Google Scholar 

  31. Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterisation of HER2/neu-binding affibody ligands. Protein Eng Des Sel 2004;17:455–62.

    Article  CAS  PubMed  Google Scholar 

  32. Steffen AC, Wikman M, Tolmachev V, Adams GP, Nilsson F, Ståhl S, et al. In vitro characterization of a bivalent anti-HER-2 affibody with potential for radionuclide based diagnostics. Cancer Biother Radiopharm 2005;20:239–48.

    Article  CAS  PubMed  Google Scholar 

  33. Steffen AC, Orlova A, Wikman M, Nilsson FY, Stahl S, Adams GP, et al. Affibody mediated tumor targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 2006;33:631–8.

    Article  CAS  PubMed  Google Scholar 

  34. Mume E, Orlova A, Nilsson F, Larsson B, Nilsson AS, Sjöberg S, et al. Evaluation of (4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjugate Chem 2005;16:1547–55.

    Article  CAS  Google Scholar 

  35. Orlova A, Magnusson M, Eriksson T, Nilsson M, Larsson B, Höiden-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.

    Article  CAS  PubMed  Google Scholar 

  36. Tolmachev V, Nilsson FY, Widström C, Andersson K, Gedda L, Wennborg A, et al. 111In-benzyl-DTPA-ZHER2:342, an Affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 2006;47:846–53.

    CAS  PubMed  Google Scholar 

  37. Orlova A, Nilsson F, Magnusson M, Gedda L, Widstrom C, Wennborg A, et al. 111In-Bz-DTPA-ZHER2:342, a candidate for imaging of HER2-expression in malignant tumors. J Lab Comp Radiopharm 2005;48 Suppl 1:S51.

    Google Scholar 

  38. Liu S, Edwards DS. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 1999;99:2235–68.

    Article  CAS  PubMed  Google Scholar 

  39. Orlova A, Nilsson F, Wikman M, Ståhl S, Carlsson J, Tolmachev V. Comparative in vivo evaluation of iodine and technetium labels on anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. J Nucl Med 2006;47:512–9.

    CAS  PubMed  Google Scholar 

  40. Zhu Z, Wang Y, Zhang Y, Liu G, Liu N, Rusckowski M, et al. A novel and simplified route to the synthesis of N3S chelators for 99mTc labeling. Nucl Med Biol 2001;28:703–8.

    Article  CAS  PubMed  Google Scholar 

  41. Qu T, Wang Y, Zhu Z, Rusckowski M, Hnatowich DJ. Different chelators and different peptides together influence the in vitro and mouse in vivo properties of 99Tcm. Nucl Med Commun 2001;22:203–15.

    Article  CAS  PubMed  Google Scholar 

  42. Lei K, Rusckowski M, Chang F, Qu T, Mardirossian G, Hnatowich DJ. Technetium-99m antibodies labeled with MAG3 and SHNH: an in vitro and animal in vivo comparison. Nucl Med Biol 1996;23:917–22.

    Article  CAS  PubMed  Google Scholar 

  43. Kim MK, Jeong HJ, Kao CH, Yao Z, Paik DS, Pie JE, et al. Improved renal clearance and tumor targeting of 99mTc-labeled anti-Tac monoclonal antibody Fab by chemical modifications. Nucl Med Biol 2002;29:139–46.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi H, Yoo TM, Kim IS, Kim MK, Le N, Webber KO, et al. L-Lysine effectively blocks renal uptake of I-125 or Tc-99m labeled anti-Tac disulfide-stabilized Fv fragment. Cancer Res 1996;56:3788–95.

    CAS  PubMed  Google Scholar 

  45. Decristoforo C, Mather SJ. Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide. Bioconjugate Chem 1999;10:431–8.

    Article  CAS  Google Scholar 

  46. Zhang YM, Liu N, Zhu ZH, Rusckowski M, Hnatowich DJ. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med 2000;27:1700–7.

    Article  CAS  PubMed  Google Scholar 

  47. Engfeldt T, Renberg B, Brumer H, Nygren PÅ, Karlström AE. Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. Chembiochem 2005;6:1043–50.

    Article  CAS  PubMed  Google Scholar 

  48. Blok D, Feitsma HI, Kooy YM, Welling MM, Ossendorp F, Vermeij P, et al. New chelation strategy allows for quick and clean 99mTc-labeling of synthetic peptides. Nucl Med Biol 2004;31:815–20.

    Article  CAS  PubMed  Google Scholar 

  49. Winnard P Jr, Chang F, Rusckowski M, Mardirossian G, Hnatowich DJ. Preparation and use of NHS-MAG3 for technetium-99m labeling of DNA. Nucl Med Biol 1997;24:425–32.

    Article  CAS  PubMed  Google Scholar 

  50. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Targeting of HER2 antigen for the treatment of disseminated peritoneal disease. Clin Cancer Res 2004;10:7834–41.

    Article  CAS  PubMed  Google Scholar 

  51. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. α-Particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm 2005;20:557–68.

    Article  CAS  PubMed  Google Scholar 

  52. Orlova A, Bruskin A, Sjöström A, Lundqvist H, Gedda L, Tolmachev V. Cellular processing of 125I and 111In labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 2000;27:827–35.

    Article  CAS  PubMed  Google Scholar 

  53. Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, et al. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res 2004;64:6200–6.

    Article  CAS  PubMed  Google Scholar 

  54. Behr TM, Gotthardt M, Barth A, Behe M. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001;45:189–200.

    CAS  PubMed  Google Scholar 

  55. Hnatowich DJ, Chang F, Lei K, Ruscowski M. The influence of temperature and alkaline pH on the labeling of free and conjugated MAG3 with technetium-99m. Appl Radiat lsot 1997;48:587–94.

    Article  CAS  Google Scholar 

  56. Wegener WA, Petrelli N, Serafini A, Goldenberg DM. Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med 2000;41:1016–20.

    CAS  PubMed  Google Scholar 

  57. Fuster D, Maurel J, Muxi A, Setoain X, Ayuso C, Martin F, et al. Is there a role for 99mTc-anti-CEA monoclonal antibody imaging in the diagnosis of recurrent colorectal carcinoma? Q J Nucl Med 2003;47:109–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Affibody AB and grants from the Swedish Cancer Society and Swedish Research Council (VR). We thank Veronika Eriksson at BMS and the animal facility staff of Rudbeck laboratory for technical assistance, and Gustav Sundqvist at KTH for running the ESI-MS analyses. We thank Dr. Joachim Feldwisch, Dr. Anders Wennborg and Dr. Lars Abrahmsén (Affibody AB) for interesting and inspiring discussions on the use of Affibody molecules for imaging and for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engfeldt, T., Orlova, A., Tran, T. et al. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 34, 722–733 (2007). https://doi.org/10.1007/s00259-006-0266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0266-4

Keywords

Navigation