Skip to main content

Advertisement

Log in

Quantification of Parkinson’s disease-related network expression with ECD SPECT

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Spatial covariance analysis has been used with FDG PET to identify a specific metabolic network associated with Parkinson’s disease (PD). In the current study, we utilized a new, fully automated voxel-based method to quantify network expression in ECD SPECT images from patients with classical PD, patients with multiple system atrophy (MSA), and healthy control subjects.

Methods

We applied a previously validated voxel-based PD-related covariance pattern (PDRP) to quantify network expression in the ECD SPECT scans of 35 PD patients, 15 age- and disease severity-matched MSA patients, and 35 age-matched healthy control subjects. PDRP scores were compared across groups using analysis of variance. The sensitivity and specificity of the prospectively computed PDRP scores in the differential diagnosis of individual subjects were assessed by receiver operating characteristic (ROC) analysis.

Results

PDRP scores were significantly increased (p < 0.001) in the PD group relative to the MSA and control groups. ROC analysis indicated that the overall diagnostic accuracy of the PDRP measures was 0.91 (AUC). The optimal cutoff value was consistent with a sensitivity of 0.97 and a specificity of 0.80 and 0.71 for discriminating PD patients from MSA and normal controls, respectively.

Conclusion

Our findings suggest that fully automated voxel-based network assessment techniques can be used to quantify network expression in the ECD SPECT scans of parkinsonian patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998;339:1044–53.

    Article  PubMed  CAS  Google Scholar 

  2. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33–9.

    Article  PubMed  CAS  Google Scholar 

  3. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–4.

    Article  PubMed  CAS  Google Scholar 

  4. Vanacore N. Epidemiological evidence on multiple system atrophy. J Neural Transm 2005;112:1605–12.

    Article  PubMed  CAS  Google Scholar 

  5. Eckert T, Eidelberg D. The role of functional neuroimaging in the differential diagnosis of idiopathic Parkinson’s disease and multiple system atrophy. Clin Auton Res 2004;14:84–91.

    Article  PubMed  Google Scholar 

  6. Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. Neuroimage 2004;21:229–35.

    Article  PubMed  Google Scholar 

  7. Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54:697–702.

    PubMed  CAS  Google Scholar 

  8. Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 2003;60:922–7.

    Article  PubMed  CAS  Google Scholar 

  9. Van Laere K, Santens P, Bosman T, De Reuck J, Mortelmans L, Dierckx R. Statistical parametric mapping of 99mTc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters. J Nucl Med 2004;45:933–42.

    PubMed  Google Scholar 

  10. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.

    Article  PubMed  Google Scholar 

  11. Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. Neurorx 2005;2:361–71.

    Article  PubMed  Google Scholar 

  12. Ma Y, Tang C, Spetsieres P, Dhawan V, Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab 2006; in press.

  13. Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, et al. Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 1999;40:1264–9.

    PubMed  CAS  Google Scholar 

  14. Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 2004;22:236–45.

    Article  PubMed  Google Scholar 

  15. Asanuma K, Ma Y, Huang C, Carbon-Correll M, Edwards C, Raymond D, et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol 2005;57:596–600.

    Article  PubMed  CAS  Google Scholar 

  16. Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 2001;57:2083–8.

    PubMed  CAS  Google Scholar 

  17. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006;129:2667–78.

    Article  PubMed  Google Scholar 

  18. Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 2001;124:1601–9.

    Article  PubMed  CAS  Google Scholar 

  19. Trošt M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 2006;31:301–7.

    Article  PubMed  Google Scholar 

  20. Feigin A, Antonini A, Fukuda M, De Notaris R, Benti R, Pezzoli G, et al. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov Disord 2002;17:1265–70.

    Article  PubMed  Google Scholar 

  21. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427–42.

    Article  PubMed  CAS  Google Scholar 

  22. Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994;117:835–45.

    Article  PubMed  Google Scholar 

  23. Van Laere K, Koole M, Versijpt J, Vandenberghe S, Brans B, D’sAsseler Y, et al. Transfer of normal 99mTc-ECD brain SPET databases between different gamma cameras. Eur J Nucl Med 2001;28:435–49.

    Article  PubMed  Google Scholar 

  24. Spetsieris P, Ma Y, Dhawan V, Moeller J, Eidelberg D. Highly automated computer-aided diagnosis of neurological disorders using functional brain imaging. Proc SPIE: Medical Imaging 2006;6144:61445M1–12.

    Google Scholar 

  25. Ludbrook J. Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 1998;25:1032–7.

    PubMed  CAS  Google Scholar 

  26. Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology 2003;229:3–8.

    PubMed  Google Scholar 

  27. Huang C, Feigin A, Ma Y, Eidelberg D. Imaging measures of longitudinal change in Parkinson’s disease. Neurology 2005;64(6, Suppl 1):A325.

    Google Scholar 

  28. Moeller JR, Eidelberg D. Divergent expression of regional metabolic topographies in Parkinson’s disease and normal ageing. Brain 1997;120:2197–206.

    Article  PubMed  Google Scholar 

  29. Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J Nucl Med 1995;36:378–83.

    PubMed  CAS  Google Scholar 

  30. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.

    PubMed  CAS  Google Scholar 

  31. Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Early differential diagnosis of Parkinson’s disease with18F-fluorodeoxyglucose and positron emission tomography. Neurology 1995;45:1995–2004.

    PubMed  CAS  Google Scholar 

  32. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000;47:93–100.

    Article  PubMed  CAS  Google Scholar 

  33. Kobari M, Fukuuchi Y, Shinohara T, Obara K, Nogawa S. Levodopa-induced local cerebral blood flow changes in Parkinson’s disease and related disorders. J Neurol Sci 1995;128:212–8.

    Article  PubMed  CAS  Google Scholar 

  34. Ma Y, Eckert T, Feigin A, Dhawan V, Eidelberg D. Abnormal metabolic topography in patients with multiple systems atrophy: a FDG PET study. Neurology 2005;64(6, suppl 1):A235.

    Google Scholar 

  35. Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease. Ann Neurol 1993;33:518–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eidelberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, T., Van Laere, K., Tang, C. et al. Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 34, 496–501 (2007). https://doi.org/10.1007/s00259-006-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0261-9

Keywords

Navigation