Skip to main content
Log in

Software package for integrated data processing for internal dose assessment in nuclear medicine (SPRIND)

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Internal radiation dose calculations are normally carried out using the Medical Internal Radiation Dose (MIRD) schema. This requires residence times of radiopharmaceutical activity and S-values for all organs of interest. Residence times can be obtained by quantitative nuclear imaging modalities. For dealing with S-values, the freeware packages MIRDOSE and, more recently, OLINDA/EXM are available. However, these software packages do not calculate residence times from image data.

Methods and results

For this purpose, we developed an IDL-based software package for integrated data processing for internal dose assessment in nuclear medicine (SPRIND). SPRIND allows reading and viewing of planar whole-body scintigrams. Organ and background regions of interest (ROIs) can be drawn and are automatically mirrored from the anterior to the posterior view. ROI statistics are used to obtain anterior-posterior averaged counts for each organ, corrected for background activity and attenuation. Residence times for each organ are calculated based on effective decay. The total body biological half-time is calculated for use in the voiding bladder model. Red bone marrow absorbed dose can be calculated using bone regions in the scintigrams or by a blood-derived method. Finally, the results are written to a file in MIRDOSE-OLINDA/EXM format. Using scintigrams in DICOM, the complete analysis is gamma camera vendor independent, and can be performed on any computer using an IDL virtual machine.

Conclusion

SPRIND is an easy-to-use software package for radiation dose assessment studies. It has made these studies less time consuming and less error prone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loevinger R, Budinger T, Watson E. MIRD primer for absorbed dose calculations. New York: Society of Nuclear Medicine; 1988.

    Google Scholar 

  2. Stabin MG. MIRDOSE: personal computer software for internal dose asssessment in nuclear medicine. J Nucl Med 1996;37:538–46.

    PubMed  CAS  Google Scholar 

  3. Stabin MG, Sparks RB. Olinda—PC-based software for biokinetic analysis and internal dose calculations in nuclear medicine. J Nucl Med 2003;44:103P.

    Google Scholar 

  4. Postema EJ, Börjesson PKE, Buijs WCAM, Roos JC, Marres HAM, Boerman OC, et al. Dosimetric analysis of radioimmunotherapy with 186Re-labeled bivatuzumab in patients with head and neck cancer. J Nucl Med 2003;44:1690–9.

    PubMed  CAS  Google Scholar 

  5. Stabin MG, da Luz CQPL. New decay data for internal and extrernal dose assessment. Health Phys 2002;83(4):471–75.

    Article  PubMed  CAS  Google Scholar 

  6. International Commission on Radiological Protection. Report of the task group on reference man, ICRP publication 23. New York: Pergamon Press; 1975. pp. 89–91.

    Google Scholar 

  7. Shen S, DeNardo GL, Sgouros G, O’Donnell RT, DeNardo SJ. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40:2102–6.

    PubMed  CAS  Google Scholar 

  8. Brown E, Hopper J, Hodges JL, Bradley B, Wennesland R, Yamauchi H. Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit. J Clin Invest 1962;41:2182–90.

    Article  PubMed  CAS  Google Scholar 

  9. Wennesland R, Brown E, Hopper J, Hodges JL, Guttentag OE, Scott KG, et al. Red cell, plasma and blood volume in healthy men measured by radiochromium (Cr51) cell tagging and hematocrit: influence of age, somatotype and habits of physical activity on the variance after regression of volumes to height and weight combined. J Clin Invest 1959;38:1065–77.

    PubMed  CAS  Google Scholar 

  10. Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys 1976;3:253–5.

    Article  CAS  Google Scholar 

  11. Buijs WCAM, Siegel JA, Boerman OC, Corstens FHM. Absolute organ activity estimated by five different methods of background correction. J Nucl Med 1998;39:2167–72.

    PubMed  CAS  Google Scholar 

  12. Snyder WS, Ford MR, Warner GG, Watson SB. ‘S’, Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD pamphlet 11. New York, NY: Society of Nuclear Medicine; 1975.

    Google Scholar 

  13. Weber D, Eckerman KF, Dillman LT, Ryman J. MIRD: radionuclide data and decay schemes. New York: Society of Nuclear Medicine; 1989.

    Google Scholar 

  14. Eckerman KF, Stabin MG. Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 2000;78:199–214.

    Article  PubMed  CAS  Google Scholar 

  15. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34:689–94.

    PubMed  CAS  Google Scholar 

  16. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamplet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S–61S.

    PubMed  CAS  Google Scholar 

  17. Erwin WD, Groch MW, Macey DJ, DeNardo GL, DeNardo SJ, Shen S. A radioimmunoimaging and MIRD dosimetry treatment planning program for radioimmunotherapy. Nucl Med Biol 1996;23:525–32.

    Article  PubMed  CAS  Google Scholar 

  18. Liu A, Williams LE, Lopatin G, Yamauchi DM, Wong JY, Raubitschek AA. A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 1999;40:1151–3.

    PubMed  CAS  Google Scholar 

  19. Sjögreen K, Ljungberg M, Strand SE. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to 131I. J Nucl Med 2002;43:972–82.

    PubMed  Google Scholar 

  20. McKay E. A software tool for specifying voxel models for dosimetry estimation. Cancer Biother Radiopharm 2003;18:61–9.

    Article  Google Scholar 

  21. Glatting G, Landmann M, Kull Th, Wunderlich A, Blumstein NM, Buck AK, et al. Internal radionuclide therapy: the ULMDOS software for treatment planning. Med Phys 2005;32:2399–405.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Visser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, E., Postema, E., Boerman, O. et al. Software package for integrated data processing for internal dose assessment in nuclear medicine (SPRIND). Eur J Nucl Med Mol Imaging 34, 413–421 (2007). https://doi.org/10.1007/s00259-006-0226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0226-z

Keywords

Navigation