Skip to main content

Advertisement

Log in

αvβ3-integrin imaging: a new approach to characterise angiogenesis?

  • Original paper
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Overview

The field of angiogenesis research is one of the most rapidly growing biomedical disciplines. Great efforts are being made to develop anti-angiogenesis drugs for treatment of cancer as well as non-oncological diseases. Thus, imaging techniques allowing non-invasive monitoring of corresponding molecular processes will be of great interest. One target structure involved in the angiogenic process is the integrin αvβ3, which mediates the migration of activated endothelial cells during vessel formation.

Materials and methods

A variety of radiolabelled RGD peptides have been introduced for monitoring of αvβ3 expression using nuclear medicine tracer techniques.

Objectives

This review discusses tracer development and highlights some strategies for tracer optimisation. It summarises the preclinical and clinical data and discusses the potential of this class of tracer to characterise angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249–57

    Article  PubMed  CAS  Google Scholar 

  2. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest 1999;103:47–54

    Article  PubMed  CAS  Google Scholar 

  3. Creamer D, Sullivan D, Bicknell R, Barker J. Angiogenesis in psoriasis. Angiogenesis 2002;5:231–6

    Article  PubMed  CAS  Google Scholar 

  4. Bishop GG, McPherson JA, Sanders JM, Hesselbacher SE, Feldman MJ, McNamara CA, et al. Selective αvβ3-receptor blockade reduces macrophage infiltration and restenosis after balloon angioplasty in the atherosclerotic rabbit. Circulation 2001;103:1906–11

    PubMed  CAS  Google Scholar 

  5. Chavakis E, Riecke B, Lin J, Linn T, Bretzel RG, Preissner KT, Brownlee M, Hammes HP. Kinetics of integrin expression in the mouse model of proliferative retinopathy and success of secondary intervention with cyclic RGD peptides. Diabetologia 2002;45:262–7

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29:15–8

    PubMed  CAS  Google Scholar 

  7. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–60

    Article  PubMed  CAS  Google Scholar 

  8. Ellis LM, Liu W, Fan F, Jung YD, Reinmuth N, Stoeltzing O, et al. Synopsis of angiogenesis inhibitors in oncology. Oncology 2002;16:14–22

    PubMed  Google Scholar 

  9. Hagedorn M, Bikfalvi A. Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 2000;34:89–110

    Article  PubMed  CAS  Google Scholar 

  10. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, et al. Angiogenesis factors. Intern Med 2001;40:565–72

    Article  PubMed  CAS  Google Scholar 

  11. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005;9:267–85

    Article  PubMed  CAS  Google Scholar 

  12. Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogenesis. Cancer J Sci Am 2000;6:S245–9

    Google Scholar 

  13. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–8

    Article  PubMed  CAS  Google Scholar 

  14. Mitjans F, Meyer T, Fittschen C, Goodman S, Jonczyk A, Marshall JF, et al. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins. Int J Cancer 2000;87:716–23

    Article  PubMed  CAS  Google Scholar 

  15. Patel SR, Jenkins J, Papadopolous N, Burgess MA, Plager C, Gutterman J, et al. Pilot study of vitaxin—an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer 2001;92:1347–8

    Article  PubMed  CAS  Google Scholar 

  16. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002;8:918–21

    Article  PubMed  CAS  Google Scholar 

  17. Matter A. Tumor angiogenesis as a therapeutic target. Drug Discov Today 2001;6:1005–24

    Article  PubMed  CAS  Google Scholar 

  18. Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 2002;5:237–56

    Article  PubMed  CAS  Google Scholar 

  19. Smith JW. Cilengitide Merck. Curr Opin Investig Drugs 2003;4:741–5

    PubMed  CAS  Google Scholar 

  20. Raguse JD, Gath HJ, Bier J, Riess H, Oettle H. Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 2004;40:228–30

    Article  PubMed  CAS  Google Scholar 

  21. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–7

    Article  PubMed  CAS  Google Scholar 

  22. Haubner R, Finsinger D, Kessler H. Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angew Chem Int Ed Engl 1997;36:1374–89

    Article  CAS  Google Scholar 

  23. Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 1991;291:50–4

    Article  PubMed  CAS  Google Scholar 

  24. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 2004;10:1439–55

    Article  PubMed  CAS  Google Scholar 

  25. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–71

    PubMed  CAS  Google Scholar 

  26. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5

    PubMed  CAS  Google Scholar 

  27. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326–36

    PubMed  CAS  Google Scholar 

  28. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 2004;15:61–9

    Article  PubMed  CAS  Google Scholar 

  29. Haubner R, Kuhnast B, Wester HJ, Weber WA, Huber R, Senekowitsch-Schmidtke R, et al. [F-18]-RGD-peptides conjugated with hydrophilic tetrapeptides for the noninvasive determination of the αvβ3 integrin. J Nucl Med 2002;43 (Suppl):89P

    Google Scholar 

  30. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001;40:539–51

    Article  PubMed  CAS  Google Scholar 

  31. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003;2:214–21

    Article  PubMed  CAS  Google Scholar 

  32. Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 2004;31:11–9

    Article  PubMed  CAS  Google Scholar 

  33. Chen X, Park R, Hou Y, Khankaldyyan V, Gonzales-Gomez I, Tohme M, et al. MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 2004;31:1081–9

    Article  PubMed  CAS  Google Scholar 

  34. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, et al. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 2004;45:1776–83

    PubMed  CAS  Google Scholar 

  35. van Hagen PM, Breeman WA, Bernard HF, Schaar M, Mooij CM, Srinivasan A, et al. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 2000;90:186–98

    Article  PubMed  Google Scholar 

  36. Wang W, McMurray JS, Wu Q, Campbell ML, Li C. Convenient solid-phase synthesis of diethylenetriaminepenta-acetic acid (DTPA)-conjugated cyclic RGD peptide analogues. Cancer Biother Radiopharm 2005;20:547–56

    Article  PubMed  CAS  Google Scholar 

  37. Haubner R, Bruchertseifer F, Bock M, Kessler H, Schwaiger M, Wester HJ. Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the αvβ3 expression. Nuklearmedizin 2004;43:26–32

    PubMed  CAS  Google Scholar 

  38. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS. MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 2004;15:41–9

    Article  PubMed  CAS  Google Scholar 

  39. Assa-Munt N, Jia X, Laakkonen P, Ruoslahti E. Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry 2001;40:2373–8

    Article  PubMed  CAS  Google Scholar 

  40. Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a technetium-99m-labeled cyclic RGD peptide as a specific marker of αvβ3 integrin for tumor imaging. Bioconjug Chem 2002;13:561–70

    Article  PubMed  CAS  Google Scholar 

  41. Su ZF, He J, Rusckowski M, Hnatowich DJ. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands. Nucl Med Biol 2003;30:141–9

    Article  PubMed  CAS  Google Scholar 

  42. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–51

    PubMed  CAS  Google Scholar 

  43. Janssen MLH, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor imaging. Cancer Biother Radiopharm 2002;17:641–6

    Article  PubMed  CAS  Google Scholar 

  44. Thumshirn G, Hersel U, Goodman SL, Kessler H. Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 2003;9:2717–25

    Article  PubMed  CAS  Google Scholar 

  45. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 2004;45:892–902

    PubMed  CAS  Google Scholar 

  46. Poethko T, Schottelius M, Thumshirn G, Herz M, Haubner R, Henriksen G, et al. Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta 2004;92:317–27

    Article  CAS  Google Scholar 

  47. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104

    Article  PubMed  CAS  Google Scholar 

  48. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, Chen X. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med 2006;47:113–21

    PubMed  CAS  Google Scholar 

  49. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 2004;6:350–9

    Article  PubMed  Google Scholar 

  50. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18

    PubMed  CAS  Google Scholar 

  51. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin αv gene expression in human melanoma tumorigenicity. J Clin Invest 1992;89:2018–22

    Article  PubMed  CAS  Google Scholar 

  52. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005;2:29

    Article  CAS  Google Scholar 

  53. Myoken Y, Kayada Y, Okamoto T, Kan M, Sato GH, Sato JD. Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcimoma cells and identification of VEGF membrane binding sites. Proc Natl Acad Sci U S A 1991;88:5818–23

    Article  Google Scholar 

  54. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284:808–12

    Article  PubMed  CAS  Google Scholar 

  55. Pichler B, Braumueller H, Haubner R, Sakrauski AK, Kneilling M, Senekowitsch-Schmidtke R, et al. Monitoring of cellular immunotherapy in RIP1-Tag2 transgenic mice with radiolabeled RGD-peptides. J Nucl Med 2002;43:122P

    Google Scholar 

  56. Pichler BJ, Kneilling M, Haubner R, Braumuller H, Schwaiger M, Rocken M, et al. Imaging of delayed-type hypersensitivity reaction by PET and 18F-Galacto-RGD. J Nucl Med 2005;46:184–9

    PubMed  Google Scholar 

  57. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the αvβ3-selective tracer 18F-Galacto-RGD in cancer patients. J Nucl Med 2005;46:1333–41

    PubMed  CAS  Google Scholar 

  58. Beer AJ, Haubner R, Wolf I, Goebel M, Luderschmidt S, Niemeyer M, et al. PET-based dosimetry in man of [18F]Galacto-RGD, a new radiotracer for imaging of αvβ3 expression. J Nucl Med 2006;47:763–9

    PubMed  CAS  Google Scholar 

  59. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expresssion in man. Clin Cancer Res 2006; in press

  60. Gasparini G, Barbareschi M, Boracchi P, Verderio P, Caffo O, Meli S, et al. Tumor angiogenesis predicts clinical outcome of node-positive breast cancer patients treated with adjuvant hormone therapy or chemotherapy. Cancer J Sci Am 1995;1:131

    PubMed  CAS  Google Scholar 

  61. Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fujii N, Kawaguchi M, et al. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo αvβ3 integrin related tumor imagin. Nucl Med Biol 2003;30:1–9

    Article  PubMed  CAS  Google Scholar 

  62. Bock M, Bruchertseifer F, Haubner R, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M, Wester HJ. 99mTc-, 188Re- and 90Y-labeled αvβ3 antagonists: promising tracer for tumor-induced angiogenesis. J Nucl Med 2000;41(suppl):41P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Haubner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haubner, R. αvβ3-integrin imaging: a new approach to characterise angiogenesis?. Eur J Nucl Med Mol Imaging 33 (Suppl 1), 54–63 (2006). https://doi.org/10.1007/s00259-006-0136-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0136-0

Keywords:

Navigation