Skip to main content

Advertisement

Log in

Monitoring chemotherapy and radiotherapy of solid tumors

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

PET imaging with the glucose analog fluorodeoxyglucose (FDG-PET) has been evaluated in numerous studies to monitor tumor response in patients undergoing chemo- and radiotherapy. The clinical value of FDG-PET for differentiation of residual or recurrent viable tumor and therapy-induced fibrosis or scar tissue has been documented for various solid tumors. Furthermore, there are now several reports suggesting that quantitative assessment of therapy-induced changes in tumor FDG uptake may allow prediction of tumor response and patient outcome very early in the course of therapy. In nonresponding patients, treatment may be adjusted according to the individual chemo- and radiosensitivity of the tumor tissue. Since the number of alternative treatments for solid tumors (e.g., second-line chemotherapy agents, protein kinase, or angiogenesis inhibitors) is continuously increasing, early prediction of tumor response to chemotherapy and radiotherapy by FDG-PET has enormous potential to “personalize” treatment and to reduce the side-effects and costs of ineffective therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–216

    Article  PubMed  CAS  Google Scholar 

  2. Buyse M, Thirion P, Carlson RW, Burzykowski T, Molenberghs G, Piedbois P. Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer. Lancet 2000;356:373–378

    Article  PubMed  CAS  Google Scholar 

  3. Bruzzi P, Del Mastro L, Sormani MP, Bastholt L, Danova M, Focan C, et al. Objective response to chemotherapy as a potential surrogate end point of survival in metastatic breast cancer patients. J Clin Oncol 2005;23:5117–5125

    Article  PubMed  Google Scholar 

  4. Ratain MJ. Phase II oncology trials: let’s be positive. Clin Cancer Res 2005;11:5661–5662

    Article  PubMed  Google Scholar 

  5. Goffin J, Baral S, Tu D, Nomikos D, Seymour L. Objective responses in patients with malignant melanoma or renal cell cancer in early clinical studies do not predict regulatory approval. Clin Cancer Res 2005;11:5928–5934

    Article  PubMed  Google Scholar 

  6. Salzer-Kuntschik M, Delling G, Beron G, Sigmund R. Morphological grades of regression in osteosarcoma after polychemotherapy—study COSS 80. J Cancer Res Clin Oncol 1983;106(Suppl):21–24

    Article  PubMed  Google Scholar 

  7. Junker K, Langner K, Klinke F, Bosse U, Thomas M. Grading of tumor regression in non-small cell lung cancer: morphology and prognosis. Chest 2001;120:1584–1591

    Article  PubMed  CAS  Google Scholar 

  8. Mandard A, Dalibard F, Mandard J, Marnay J, Henry-Amar M, Petiot J, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994;73:2680–2686

    Article  PubMed  CAS  Google Scholar 

  9. Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003;98:1521–1530

    Article  PubMed  Google Scholar 

  10. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002;20:776–790

    Article  PubMed  Google Scholar 

  11. Wieder HA, Brucher BL, Zimmermann F, Becker K, Lordick F, Beer A, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 2004;22:900–908

    Article  PubMed  CAS  Google Scholar 

  12. Brucher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001;233:300–309

    Article  PubMed  CAS  Google Scholar 

  13. Flamen P, Van Cutsem E, Lerut A, Cambier J, Haustermans K, Bormans G, et al. Positron emission tomography for assessment of the response to induction chemotherapy in locally advanced esophageal cancer. Ann Oncol 2002;13:361–368

    Article  PubMed  CAS  Google Scholar 

  14. Downey RJ, Akhurst T, Ilson D, Ginsberg R, Bains MS, Gonen M, et al. Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 2003;21:428–432

    Article  PubMed  Google Scholar 

  15. Swisher SG, Maish M, Erasmus JJ, Correa AM, Ajani JA, Bresalier R, et al. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 2004;78:1152–60, discussion 1152–1160

    Article  PubMed  Google Scholar 

  16. Swisher SG, Erasmus J, Maish M, Correa AM, Macapinlac H, Ajani JA, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer 2004;101:1776–1785

    Article  PubMed  Google Scholar 

  17. MacManus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2003;21:1285–1292

    Article  Google Scholar 

  18. Hellwig D, Graeter TP, Ukena D, Georg T, Kirsch CM, Schafers HJ. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg 2004;128:892–899

    Article  PubMed  Google Scholar 

  19. Akhurst T, Downey RJ, Ginsberg MS, Gonen M, Bains M, Korst R, et al. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg 2002;73:259–64, discussion 264–266

    Article  PubMed  Google Scholar 

  20. Ryu JS, Choi NC, Fischman AJ, Lynch TJ, Mathisen DJ. FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 2002;35:179–187

    Article  PubMed  Google Scholar 

  21. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 2004;78:1903–1909, discussion 1909

    Article  PubMed  Google Scholar 

  22. Port JL, Kent MS, Korst RJ, Keresztes R, Levin MA, Altorki NK. Positron emission tomography scanning poorly predicts response to preoperative chemotherapy in non-small cell lung cancer. Ann Thorac Surg 2004;77:254–259, discussion 259

    Article  PubMed  Google Scholar 

  23. Grigsby PW, Siegel BA, Dehdashti F, Rader J, Zoberi I. Posttherapy [18F]fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 2004;22:2167–2171

    Article  PubMed  Google Scholar 

  24. Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU 3rd, et al. Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 2005;103:339–348

    Article  PubMed  Google Scholar 

  25. Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar MR, Keppler P, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637–1643

    PubMed  CAS  Google Scholar 

  26. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 2002;94:3277–3284

    Article  PubMed  CAS  Google Scholar 

  27. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993;11:2101–2111

    PubMed  CAS  Google Scholar 

  28. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13:1470–1477

    PubMed  CAS  Google Scholar 

  29. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996;14:700–708

    PubMed  CAS  Google Scholar 

  30. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92–98

    Article  PubMed  CAS  Google Scholar 

  31. Honkoop AH, van Diest PJ, de Jong JS, Linn SC, Giaccone G, Hoekman K, et al. Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. Br J Cancer 1998;77:621–626

    PubMed  CAS  Google Scholar 

  32. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676–1688

    PubMed  CAS  Google Scholar 

  33. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689–1695

    PubMed  CAS  Google Scholar 

  34. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 2003;44:1806–1814

    PubMed  Google Scholar 

  35. Kelsen DP, Minsky B, Smith M, Beitler J, Niedzwiecki D, Chapman D, et al. Preoperative therapy for esophageal cancer: a randomized comparison of chemotherapy versus radiation therapy. J Clin Oncol 1990;8:1352–1361

    PubMed  CAS  Google Scholar 

  36. Medical Research Council. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet 2002;359:1727–1733

    Article  Google Scholar 

  37. Kelsen D. Preoperative chemoradiotherapy for esophageal cancer. J Clin Oncol 2001;19:283–285

    PubMed  CAS  Google Scholar 

  38. Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001;19:305–313

    PubMed  CAS  Google Scholar 

  39. Ajani JA, Mansfield PF, Lynch PM, Pisters PW, Feig B, Dumas P, et al. Enhanced staging and all chemotherapy preoperatively in patients with potentially resectable gastric carcinoma. J Clin Oncol 1999;17:2403–411

    PubMed  CAS  Google Scholar 

  40. Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001;19:3058–3065

    PubMed  CAS  Google Scholar 

  41. Ott K, Fink U, Becker K, Stahl A, Dittler HJ, Busch R, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 2003;21:4604–4610

    Article  PubMed  CAS  Google Scholar 

  42. Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 2005;23:8362–8370

    Article  PubMed  Google Scholar 

  43. Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 2005;23:7445–7453

    Article  PubMed  Google Scholar 

  44. Haberkorn U, Morr I, Oberdorfer F, Bellemann ME, Blatter J, Altmann A, et al. Fluorodeoxyglucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 1994;35:1842–1850

    PubMed  CAS  Google Scholar 

  45. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy [see comments]. J Nucl Med 1993;34:773–779

    PubMed  CAS  Google Scholar 

  46. Rozental JM, Levine RL, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment. A positron emission tomographic study [see comments]. Arch Neurol 1989;46:1302–1307

    PubMed  CAS  Google Scholar 

  47. Maruyama I, Sadato N, Waki A, Tsuchida T, Yoshida M, Fujibayashi Y, et al. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: a PET study. J Nucl Med 1999;40:1085–1090

    PubMed  CAS  Google Scholar 

  48. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001;19:2797–2803

    PubMed  CAS  Google Scholar 

  49. Hicks RJ, MacManus MP, Matthews JP, Hogg A, Binns D, Rischin D, et al. Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 2004;60:412–418

    Article  PubMed  Google Scholar 

  50. Amthauer H, Denecke T, Rau B, Hildebrandt B, Hunerbein M, Ruf J, et al. Response prediction by FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging 2004;31:811–819

    Article  PubMed  Google Scholar 

  51. Pottgen C, Levegrun S, Theegarten D, Marnitz S, Grehl S, Pink R, et al. Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 2006;12:97–106

    Article  PubMed  Google Scholar 

  52. Townsend DW, Carney JP, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med 2004;45(Suppl 1):4S–14S

    PubMed  Google Scholar 

  53. Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003;226:906–910

    Article  PubMed  Google Scholar 

  54. Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46:1481–1487

    PubMed  Google Scholar 

  55. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hojgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167–1175

    Article  PubMed  CAS  Google Scholar 

  56. Beer A, Wieder H, Lordick F, Ott K, Fischer M, Becker K, et al. Adenocarcinomas of the esophagogastric junction: MDCT for evaluation of early response to neoadjuvant chemotherapy. Radiology 2006;Mar 16 [Epub ahead of print]

  57. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The Visual Response Score and the change in total lesion glycolysis. Clin Positron Imaging 1999;2:159–171

    Article  PubMed  Google Scholar 

  58. Young H, Baum R, Cremerius U, Herholz K, Hoeckstra O, Lammertsma A, et al. Measurement of clinical and sublinical tumour response using f-18-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999;35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  59. Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 1995;196:167–173

    PubMed  CAS  Google Scholar 

  60. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–1777

    PubMed  CAS  Google Scholar 

  61. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003;21:2651–2657

    Article  PubMed  CAS  Google Scholar 

  62. Yamane T, Daimaru O, Ito S, Yoshiya K, Nagata T, Uchida H. Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 2004;45:1838–1842

    PubMed  Google Scholar 

  63. Weber WA, Ott K. Imaging of esophageal and gastric cancer. Semin Oncol 2004;31:530–541

    Article  PubMed  Google Scholar 

  64. Brun E, Kjellen E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127–135

    Article  PubMed  Google Scholar 

  65. Lordick F, Weber WA, Stein HJ, Schuhmacher C, Beer A, Hennig M, et al. Individualized neoadjuvant treatment strategy in adenocarcinoma of the esophago-gastric junction (AEG): interim report on the MUNICON trial. J Clin Oncol 2004;22:328S

    Google Scholar 

  66. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, et al. Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 2003;39:170–177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.A., Wieder, H. Monitoring chemotherapy and radiotherapy of solid tumors. Eur J Nucl Med Mol Imaging 33 (Suppl 1), 27–37 (2006). https://doi.org/10.1007/s00259-006-0133-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0133-3

Keywords

Navigation