Skip to main content

Advertisement

Log in

How should we analyse FDG PET studies for monitoring tumour response?

  •  
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

FDG PET is a promising technique for monitoring tumour response early during anticancer therapy. Progress, however, has been limited owing to the multitude of methods currently in use. Here, the most promising techniques for multi-centre trials are discussed briefly, with emphasis on the need for standardisation. In addition, an approach is presented for response monitoring studies using newly developed drugs. This approach makes use of a large database of response monitoring studies, which defines the relationship between simplified clinical methods and full quantitative analysis for classic cytotoxic drugs. For a new drug, first a pilot study is performed to assess whether it affects this relationship. Based on this pilot, it is decided whether or not a simplified clinical method can be used in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Propper DJ, de Bono J, Saleem A, Ellard S, Flanagan E, Paul J, et al. Use of positron emission tomography in pharmacokinetic studies to investigate therapeutic advantage in a phase I study of 120-hour intravenous infusion XR5000. J Clin Oncol 2003;21:203–210

    Article  PubMed  CAS  Google Scholar 

  2. Warburg O. On the origin of cancer cells. Science 1956;123:306–314

    Article  Google Scholar 

  3. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916

    Article  PubMed  CAS  Google Scholar 

  4. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJJ, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731–743

    Article  PubMed  CAS  Google Scholar 

  5. Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, et al. Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 2002;43:1304–1309

    PubMed  CAS  Google Scholar 

  6. Krak NC, van der Hoeven JJ, Hoekstra OS, Twisk JWR, van der Wall E, Lammertsma AA. Measuring [18F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 2003;30:674–681

    Article  PubMed  CAS  Google Scholar 

  7. Kroep JR, Van Groeningen CJ, Cuesta MA, Craanen ME, Hoekstra OS, Comans EFI, et al. Positron emission tomography using 2-deoxy-2-[18F]-fluoro-D-glucose for response monitoring in locally advanced gastroesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol 2003;5:337–346

    Article  PubMed  Google Scholar 

  8. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1991;179:765–770

    PubMed  CAS  Google Scholar 

  9. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994;35:164–167

    PubMed  CAS  Google Scholar 

  10. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189:847–850

    PubMed  CAS  Google Scholar 

  11. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993;34:1–6

    PubMed  CAS  Google Scholar 

  12. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–388

    Article  PubMed  CAS  Google Scholar 

  13. Van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac 18F-FDG PET scans. J Nucl Med 2001;42:1622–1629

    PubMed  Google Scholar 

  14. Hoekstra CJ, Hoekstra OS, Lammertsma AA. On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 1999;26:1489–1492

    Article  PubMed  CAS  Google Scholar 

  15. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7

    PubMed  CAS  Google Scholar 

  16. Messa C, Choi Y, Hoh CK, Jacobs EL, Glaspy JA, Rege S, et al. Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET. J Comput Assist Tomogr 1992;16:684–689

    Article  PubMed  CAS  Google Scholar 

  17. Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ. Simplified measurement of deoxyglucose utilization rate. J Nucl Med 1996;37:950–955

    PubMed  CAS  Google Scholar 

  18. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999;35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  19. Shankar LK, Hoffman JM, Bacharach S, Graham M, Karp J, Lammertsma AA, et al. Consensus recommendations on the use of positron emission tomography (PET) and [18F]-2-fluoro-2-deoxy-d-glucose (FDG) as an indicator of therapeutic response in patients involved in national cancer institute (NCI) clinical trials. J Nucl Med 2006; in press

  20. Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 2005;23:8362–8370

    Article  PubMed  Google Scholar 

  21. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–1527

    PubMed  Google Scholar 

  22. Krak NC, Boellaard R, Hoekstra OS, Twisk JWR, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging 2005;32:294–301

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriaan A. Lammertsma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammertsma, A.A., Hoekstra, C.J., Giaccone, G. et al. How should we analyse FDG PET studies for monitoring tumour response?. Eur J Nucl Med Mol Imaging 33 (Suppl 1), 16–21 (2006). https://doi.org/10.1007/s00259-006-0131-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0131-5

Keywords

Navigation