Skip to main content
Log in

Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Arterial input function (AIF) measurement for quantification of small animal PET studies is technically challenging and limited by the small blood volume of small laboratory animals. The present study investigated the use of a standard arterial input function (SAIF) to simplify the experimental procedure.

Methods

Twelve [18F]fluorodeoxyglucose ([18F]FDG) PET studies accompanied by serial arterial blood sampling were acquired in seven male Sprague-Dawley rats under isoflurane anaesthesia without (every rat) and with additional (five rats) vibrissae stimulation. A leave-one-out procedure was employed to validate the use of a SAIF with individual scaling by one (1S) or two (2S) arterial blood samples.

Results

Automatic slow bolus infusion of [18F]FDG resulted in highly similar AIF in all rats. The average differences of the area under the curve of the measured AIF and the individually scaled SAIF were 0.11±4.26% and 0.04±2.61% for the 1S (6-min sample) and the 2S (4-min/43-min samples) approach, respectively. The average differences between the cerebral metabolic rates of glucose (CMRglc) calculated using the measured AIF and the scaled SAIF were 1.31±5.45% and 1.30±3.84% for the 1S and the 2S approach, respectively.

Conclusion

The use of a SAIF scaled by one or (preferably) two arterial blood samples can serve as a valid substitute for individual AIF measurements to quantify [18F]FDG PET studies in rats. The SAIF approach minimises the loss of blood and should be ideally suited for longitudinal quantitative small animal [18F]FDG PET studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR. In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 2000;18:655–660

    Article  PubMed  CAS  Google Scholar 

  2. Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:691–698

    Article  PubMed  CAS  Google Scholar 

  3. Ouchi Y, Fukuyama H, Ogawa M, Yamauchi H, Kimura J, Magata Y, et al. Cholinergic projection from the basal forebrain and cerebral glucose metabolism in rats: a dynamic PET study. J Cereb Blood Flow Metab 1996;16:34–41

    Article  PubMed  CAS  Google Scholar 

  4. Katsumi Y, Hayashi T, Oyanagi C, Nagahama Y, Yamauchi H, Ono S, et al. Glucose metabolism in the rat frontal cortex recovered without the recovery of choline acetyltransferase activity after lesioning of the nucleus basalis magnocellularis. Neurosci Lett 2000;280:9–12

    Article  PubMed  CAS  Google Scholar 

  5. Moore AH, Osteen CL, Chatziioannou AF, Hovda DA, Cherry SR. Quantitative assessment of longitudinal metabolic changes in vivo after traumatic brain injury in the adult rat using FDG-microPET. J Cereb Blood Flow Metab 2000;20:1492–1501

    Article  PubMed  CAS  Google Scholar 

  6. Shimoji K, Ravasi L, Schmidt K, Soto-Montenegro ML, Esaki T, Seidel J, et al. Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. J Nucl Med 2004;45:665–672

    PubMed  CAS  Google Scholar 

  7. Toyama H, Ichise M, Liow JS, Modell KJ, Vines DC, Esaki T, et al. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J Nucl Med 2004;45:1398–1405

    PubMed  CAS  Google Scholar 

  8. Green LA, Gambhir SS, Srinivasan A, Banerjee PK, Hoh CK, Cherry SR, et al. Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose. J Nucl Med 1998;39:729–734

    PubMed  CAS  Google Scholar 

  9. Huang SC, Wu HM, Shoghi-Jadid K, Stout DB, Chatziioannou A, Schelbert HR, et al. Investigation of a new input function validation approach for dynamic mouse microPET studies. Mol Imaging Biol 2004;6:34–46

    Article  PubMed  Google Scholar 

  10. Yee SH, Jerabek PA, Fox PT. Non-invasive quantification of cerebral blood flow for rats by microPET imaging of 15O labelled water: the application of a cardiac time-activity curve for the tracer arterial input function. Nucl Med Commun 2005;26:903–911

    Article  PubMed  Google Scholar 

  11. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916

    Article  PubMed  CAS  Google Scholar 

  12. Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L. Arterial input function measurement without blood sampling using a beta-microprobe in rats. J Nucl Med 2004;45:1577–1582

    PubMed  Google Scholar 

  13. Weber B, Burger C, Biro P, Buck A. A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals. Eur J Nucl Med Mol Imaging 2002;29:319–323

    Article  PubMed  CAS  Google Scholar 

  14. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993;188:131–136

    PubMed  CAS  Google Scholar 

  15. Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 1997;24:299–304

    PubMed  CAS  Google Scholar 

  16. Shiozaki T, Sadato N, Senda M, Ishii K, Tsuchida T, Yonekura Y, et al. Noninvasive estimation of FDG input function for quantification of cerebral metabolic rate of glucose: optimization and multicenter evaluation. J Nucl Med 2000;41:1612–1618

    PubMed  CAS  Google Scholar 

  17. Takagi S, Takahashi W, Shinohara Y, Yasuda S, Ide M, Shohtsu A, et al. Quantitative PET cerebral glucose metabolism estimates using a single non-arterialized venous-blood sample. Ann Nucl Med 2004;18:297–302

    Article  PubMed  CAS  Google Scholar 

  18. Brock CS, Young H, Osman S, Luthra SK, Jones T, Price PM. Glucose metabolism in brain tumours can be estimated using [18F]2-fluorodeoxyglucose positron emission tomography and a population-derived input function scaled using a single arterialised venous blood sample. Int J Oncol 2005;26:1377–1383

    PubMed  CAS  Google Scholar 

  19. Surti S, Karp JS, Perkins AE, Cardi CA, Daube-Witherspoon ME, Kuhn A, et al. Imaging performance of A-PET: a small animal PET camera. IEEE Trans Med Imaging 2005;24:844–852

    Article  PubMed  Google Scholar 

  20. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci 2001;48:24–30

    Article  Google Scholar 

  21. Rhodes CG, Wise RJ, Gibbs JM, Frackowiak RS, Hatazawa J, Palmer AJ, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983;14:614–626

    Article  PubMed  CAS  Google Scholar 

  22. Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997;38:1818–1823

    PubMed  CAS  Google Scholar 

  23. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–747

    PubMed  CAS  Google Scholar 

  24. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7

    PubMed  CAS  Google Scholar 

  25. Lehnhardt FJ. A new system for catheterization of the V. cava of rats for long-term infusions (Implantofix). Z Versuchstierkd 1989;32:171–178

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the valuable technical support provided by Suleman Surti, Richard Freifelder and Joel Karp at the University of Pennsylvania, Philadelphia, PA, USA. P.T.M. was supported by a grant from the German Society of Clinical Neurophysiology and Functional Imaging (DGKN). This work was funded in part by a grant from the National Institutes of Health to P.D.A. (R01-NS048315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp T. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, P.T., Circiumaru, V., Cardi, C.A. et al. Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function. Eur J Nucl Med Mol Imaging 33, 948–954 (2006). https://doi.org/10.1007/s00259-006-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0121-7

Keywords

Navigation