Skip to main content

Advertisement

Log in

Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The folate receptor (FR) is a valuable tumour marker, since it is frequently overexpressed on various cancer types. The purpose of the present study was to pre-clinically evaluate novel site-specifically modified 99mTc(CO)3 folate (γ-derivative 4, α-derivative 5) and pteroate (6) conjugates for FR targeting.

Methods

The 99mTc(CO)3 radiotracers 4–6 were prepared by a kit-like procedure. In vitro characterisation (K D and B max) of the radiotracers was performed with FR-positive KB cells. Tissue distribution was studied in tumour-bearing mice. SPECT/CT experiments were performed with a dedicated small animal SPECT/CT scanner.

Results

The complexes 46 were formed in high yields (>92%). Binding constants of the radiotracers (K D in nM: 4: 2.09; 5: 2.51; 6: 14.52) were similar to those of 3H-folic acid (K D in nM: 7.22). In vivo the folate derivatives showed significantly better tumour uptake (4: 2.3±0.4% ID/g and 5: 1.2±0.2% ID/g, 4 h p.i.) than the pteroate derivative (6: 0.4±0.2% ID/g, 4 h p.i.). Clearance of all radiotracers from the blood pool and from non-targeted tissues was efficient (tumour to blood ratio approx. 200–350, 24 h p.i.). FR-positive tissue and organs were successfully visualised via small animal SPECT/CT.

Conclusion

Radiotracers 4–6 are the first 99mTc(CO)3 tracers prepared via a kit formulation which exhibit full biological activity in vitro and in vivo. Folate derivatives 4 and 5 revealed significantly better pharmacokinetic properties than the pteroate derivative 6. Promising pre-clinical SPECT results warrant further assessment of 99mTc(CO)3 radiofolates for detection of FR-positive tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, et al. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 1987;39:297–303

    Article  PubMed  CAS  Google Scholar 

  2. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, et al. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res 1991;51:6125–6132

    PubMed  CAS  Google Scholar 

  3. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–3401

    PubMed  CAS  Google Scholar 

  4. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997;74:193–198

    Article  PubMed  CAS  Google Scholar 

  5. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284–293

    Article  PubMed  CAS  Google Scholar 

  6. Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 2001;6:44–51

    Article  PubMed  CAS  Google Scholar 

  7. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147–162

    Article  PubMed  CAS  Google Scholar 

  8. Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56:1127–1141

    Article  PubMed  CAS  Google Scholar 

  9. Li S, Deshmukh HM, Huang L. Folate-mediated targeting of antisense oligodeoxynucleotides to ovarian cancer cells. Pharm Res 1998;15:1540–1545

    Article  PubMed  CAS  Google Scholar 

  10. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-pseudomonas exotoxin conjugates toward tumor cells—contribution of translocation domain. J Biol Chem 1993;268:24847–24854

    PubMed  CAS  Google Scholar 

  11. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004;56:1177–1192

    Article  PubMed  CAS  Google Scholar 

  12. Mathias CJ, Lewis MR, Reichert DE, Laforest R, Sharp TL, Lewis JS, et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 2003;30:725–731

    Article  PubMed  CAS  Google Scholar 

  13. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 1996;37:1003–1008

    PubMed  CAS  Google Scholar 

  14. Mathias CJ, Wang S, Low PS, Waters DJ, Green MA. Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol 1999;26:23–25

    Article  PubMed  CAS  Google Scholar 

  15. Ke CY, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 2003;30:811–817

    Article  PubMed  CAS  Google Scholar 

  16. Guo WJ, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 1999;40:1563–1569

    PubMed  CAS  Google Scholar 

  17. Mathias CJ, Green MA. A kit formulation for preparation of [111In]In-DTPA-folate, a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 1998;25:585–587

    Article  PubMed  CAS  Google Scholar 

  18. Mathias CJ, Green MA. Alternative kit formulations for compounding of 111In-DTPA-folate (folatescan). J Nucl Med 2000;41:1113

    Google Scholar 

  19. Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 2003;44:700–707

    PubMed  CAS  Google Scholar 

  20. Leamon CP, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M, et al. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 2002;13:1200–1210

    Article  CAS  Google Scholar 

  21. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP. Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 2004;45:857–866

    PubMed  CAS  Google Scholar 

  22. Alberto R. New organometallic technetium complexes for radiopharmaceutical imaging. In: Krause W, editor. Contrast agents III: Radiopharmaceuticals—from diagnostics to therapeutics. Berlin Heidelberg New York: Springer; 2005; p. 1–44

  23. Boschi A, Duatti A, Uccelli L. Development of technetium-99m and rhenium-188 radiopharmaceuticals containing a terminal metal-nitrido multiple bond for diagnosis and therapy. In: Krause W, editor. Contrast agents III: Radiopharmaceuticals—from diagnostics to therapeutics. Berlin Heidelberg New York: Springer; 2005; p. 85–115

  24. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 1998;120:7987–7988

    Article  CAS  Google Scholar 

  25. Alberto R, Schibli R, Waibel R, Abram U, Schubiger AP. Basic aqueous chemistry of [M(OH2)3(CO)3]+(M=Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 1999;192:901–919

    Article  Google Scholar 

  26. Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem 2000;11:345–351

    Article  CAS  Google Scholar 

  27. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 2001;123:3135–3136

    Article  PubMed  CAS  Google Scholar 

  28. Schibli R, Schubiger PA. Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 2002;29:1529–1542

    Article  PubMed  CAS  Google Scholar 

  29. Müller C, Dumas C, Hoffmann U, Schubiger PA, Schibli R. Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. J Organomet Chem 2004;689:4712–4721

    Article  CAS  Google Scholar 

  30. Antony AC, Kane MA, Portillo RM, Elwood PC, Kolhouse JF. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J Biol Chem 1985;260:4911–4917

    Google Scholar 

  31. Dixon KH, Mulligan T, Chung KN, Elwood PC, Cowan KH. Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75-1 human breast cancer cells. J Biol Chem 1992;267:24140–24147

    PubMed  CAS  Google Scholar 

  32. Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 1997;73:859–864

    Article  PubMed  CAS  Google Scholar 

  33. Trump DP, Mathias CJ, Yang ZF, Low PSW, Marmion M, Green MA. Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 2002;29:569–573

    Article  PubMed  CAS  Google Scholar 

  34. Leamon CP, DePrince RB, Hendren RW. Folate-mediated drug delivery: effect of alternative conjugation chemistry. J Drug Target 1999;7:157–169

    Article  PubMed  CAS  Google Scholar 

  35. Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RGW. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem 1988;263:13602–13609

    PubMed  CAS  Google Scholar 

  36. Paulos CM, Reddy JA, Leamon CP, Turk MJ, Low PS. Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol Pharmacol 2004;66:1406–1414

    Article  PubMed  CAS  Google Scholar 

  37. Spinella MJ, Brigle KE, Sierra EE, Goldman ID. Distinguishing between folate receptor-a-mediated transport and reduced folate carrier-mediated transport in L1210 leukemia cells. J Biol Chem 1995;270:7842–7849

    Article  PubMed  CAS  Google Scholar 

  38. Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci U S A 1986;83:5983–5987

    Article  PubMed  CAS  Google Scholar 

  39. Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev 2004;56:1205–1217

    Article  PubMed  CAS  Google Scholar 

  40. Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol 2005;16:608–615

    Article  PubMed  CAS  Google Scholar 

  41. Morshed KM, Ross DM, McMartin KE. Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. J Nutr 1997;127:1137–1147

    PubMed  CAS  Google Scholar 

  42. Selhub J, Rosenberg IH. Demonstration of high-affinity folate binding activity associated with brush border membranes of rat kidney. Proc Natl Acad Sci U S A 1978;75:3090–3093

    Article  PubMed  CAS  Google Scholar 

  43. Goresky CA, Watanabe H, Johns DG. Renal excretion of folic acid. J Clin Invest 1963;42:1841

    Article  PubMed  CAS  Google Scholar 

  44. Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS,Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 1998;39:1579–1585

    PubMed  CAS  Google Scholar 

  45. Mathias CJ, Hubers D, Low PS, Green MA. Synthesis of [99mTc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjugate Chem 2000;11:253–257

    Article  CAS  Google Scholar 

  46. Ke CY, Mathias CJ, Green MA. Targeting the tumor-associated folate receptor with an 111In-DTPA conjugate of pteroic acid. J Am Chem Soc 2005;127:7421–7426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ilse Novak-Hofer, Dr. Robert Waibel and Dr. Elisa Garcia-Garayoa for valuable discussions and Alain Blanc, Judith Stahel and Christine De Pasquale for technical assistance. This work was financially supported by Mallinckrodt-Tyco Inc. and Merck Eprova AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Schibli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Hohn, A., Schubiger, P.A. et al. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 33, 1007–1016 (2006). https://doi.org/10.1007/s00259-006-0111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0111-9

Keywords

Navigation