Skip to main content

Advertisement

Log in

Microvessel density and p53 in detecting cervical cancer by FDG PET in cases of suspected recurrence

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cervical cancer is the second most frequently diagnosed cancer in women worldwide. About one-third of patients experience recurrent disease. A better chance of survival might be achieved by the early detection of recurrent cervical cancer. [18F]fluoro-2-deoxy-D-glucose (FDG) PET could be a promising imaging modality for this purpose, given that FDG PET has high diagnostic efficacy. Ideally, pre-selection of patients should be performed before considering FDG PET. The purpose of this study was to investigate parameters of primary cervical cancer associated with recurrence as a basis for pre-selection of patients in whom FDG PET should be performed.

Methods

Thirty-eight cervical cancer patients, clinically suspected of having recurrent disease, underwent FDG PET. Tissue from primary tumours and nine histologically confirmed metastases was analysed for biomarkers possibly related to glucose metabolism and prognosis (vascular endothelial growth factor, CD31 for microvessel density, glucose transporter-1, hexokinases I, II and III, Ki67, p53, hypoxia-inducible factor 1α, and degree of infiltration by lymphocytes and macrophages).

Results

Based on clinical outcome, sensitivity and specificity of FDG PET were 96% and 100%, respectively. Cox regression revealed microvessel density and p53 (tumour suppressor protein) to be the two most important biomarkers for prediction of recurrence (hazard ratios 2.54 and 2.28, respectively). By combining these two biomarkers in a parallel test, sensitivity and specificity in predicting recurrence were 87% and 71%, respectively. Leave-one-out cross-validation demonstrated predictive validity of a model based on microvessel density and p53.

Conclusion

In this first study of its kind, we have demonstrated that microvessel density and p53 profiles could be important in pre-selecting cervical cancer patients for detection of recurrence by FDG PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin 2003;53:5–26

    Article  PubMed  Google Scholar 

  2. Friedlander M. Guidelines for the treatment of recurrent and metastatic cervical cancer. Oncologist 2002;7:342–347

    PubMed  Google Scholar 

  3. Waggoner SE. Cervical cancer. Lancet 2003;361:2217–2225

    Article  PubMed  Google Scholar 

  4. Ijaz T, Eifel PJ, Burke T, Oswald MJ. Radiation therapy of pelvic recurrence after radical hysterectomy for cervical carcinoma. Gynecol Oncol 1998;70:241–246

    Article  PubMed  CAS  Google Scholar 

  5. Kecmanovic DM, Pavlov MJ, Kovacevic PA, Sepetkovski AV, Ceranic MS, Stamenkovic AB. Management of advanced pelvic cancer by exenteration. Eur J Surg Oncol 2003;29:743–746

    Article  PubMed  CAS  Google Scholar 

  6. Tangjitgamol S, Levenback CF, Beller U, Kavanagh JJ. Role of surgical resection for lung, liver, and central nervous system metastases in patients with gynecological cancer: a literature review. Int J Gynecol Cancer 2004;14:399–422

    Article  PubMed  CAS  Google Scholar 

  7. Vermorken JB, Zanetta G, De Oliveira CF, van der Burg ME, Lacave AJ, Teodorovic I, et al. Randomized phase III trial of bleomycin, vindesine, mitomycin-C, and cisplatin (BEMP) versus cisplatin (P) in disseminated squamous-cell carcinoma of the uterine cervix: an EORTC Gynecological Cancer Cooperative Group study. Ann Oncol 2001;12:967–974

    Article  PubMed  CAS  Google Scholar 

  8. Choi JI, Kim SH, Seong CK, Sim JS, Lee HJ, Do KH. Recurrent uterine cervical carcinoma: spectrum of imaging findings. Korean J Radiol 2000;1:198–207

    PubMed  CAS  Google Scholar 

  9. Weber TM, Sostman HD, Spritzer CE, Ballard RL, Meyer GA, Clark-Pearson DL, et al. Cervical carcinoma: determination of recurrent tumor extent versus radiation changes with MR imaging. Radiology 1995;194:135–139

    PubMed  CAS  Google Scholar 

  10. Lai CH, Huang KG, See LC, Yen TC, Tsai CS, Chang TC, et al. Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-D-glucose positron emission tomography. Cancer 2004;100:544–552

    Article  PubMed  Google Scholar 

  11. Park DH, Kim KH, Park SY, Lee BH, Choi CW, Chin SY. Diagnosis of recurrent uterine cervical cancer: computed tomography versus positron emission tomography. Korean J Radiol 2000;1:51–55

    Article  PubMed  CAS  MATH  Google Scholar 

  12. Yen TC, See LC, Chang TC, Huang KG, Ng KK, Tang SG, et al. Defining the priority of using 18F-FDG PET for recurrent cervical cancer. J Nucl Med 2004;45:1632–1639

    PubMed  Google Scholar 

  13. Belhocine T, Thille A, Fridman V, Albert A, Seidel L, Nickers P, et al. Contribution of whole-body 18FDG PET imaging in the management of cervical cancer. Gynecol Oncol 2002;87:90–97

    Article  PubMed  Google Scholar 

  14. Chang TC, Law KS, Hong JH, Lai CH, Ng KK, Hsueh S, et al. Positron emission tomography for unexplained elevation of serum squamous cell carcinoma antigen levels during follow-up for patients with cervical malignancies: a phase II study. Cancer 2004;101:164–171

    Article  PubMed  Google Scholar 

  15. Grigsby PW, Siegel BA, Dehdashti F, Mutch DG. Posttherapy surveillance monitoring of cervical cancer by FDG-PET. Int J Radiat Oncol Biol Phys 2003;55:907–913

    Article  PubMed  Google Scholar 

  16. Havrilesky LJ, Wong TZ, Secord AA, Berchuck A, Clarke-Pearson DL, Jones EL. The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol 2003;90:186–190

    Article  PubMed  Google Scholar 

  17. Kerr IG, Manji MF, Powe J, Bakheet S, Al Suhaibani H, Subhi J. Positron emission tomography for the evaluation of metastases in patients with carcinoma of the cervix: a retrospective review. Gynecol Oncol 2001;81:477–480

    Article  PubMed  CAS  Google Scholar 

  18. Malyapa RS, Mutic S, Low DA, Zoberi I, Bosch WR, Laforest R, et al. Physiologic FDG-PET three-dimensional brachytherapy treatment planning for cervical cancer. Int J Radiat Oncol Biol Phys 2002;54:1140–1146

    Article  PubMed  Google Scholar 

  19. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, Ihling C, Hogerle S, Mix M, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 2001;218:776–782

    PubMed  CAS  Google Scholar 

  20. Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul-Karim FW, Miraldi F. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol 1999;17:41–45

    PubMed  CAS  Google Scholar 

  21. Ryu SY, Kim MH, Choi SC, Choi CW, Lee KH. Detection of early recurrence with 18F-FDG PET in patients with cervical cancer. J Nucl Med 2003;44:347–352

    PubMed  Google Scholar 

  22. Sun SS, Chen TC, Yen RF, Shen YY, Changlai SP, Kao A. Value of whole body 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res 2001;21:2957–2961

    PubMed  CAS  Google Scholar 

  23. Unger JB, Ivy JJ, Connor P, Charrier A, Ramaswamy MR, Ampil FL, et al. Detection of recurrent cervical cancer by whole-body FDG PET scan in asymptomatic and symptomatic women. Gynecol Oncol 2004;94:212–216

    Article  PubMed  Google Scholar 

  24. Wong TZ, Jones EL, Coleman RE. Positron emission tomography with 2-deoxy-2-[18F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol Imaging Biol 2004;6:55–62

    Article  PubMed  Google Scholar 

  25. Yen TC, See LC, Lai CH, Yah-Huei CW, Ng KK, Ma SY, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 2004;45:22–29

    PubMed  CAS  Google Scholar 

  26. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol 1998;25:317–322

    Article  PubMed  CAS  Google Scholar 

  27. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 2000;6:1335–1340

    Article  PubMed  CAS  Google Scholar 

  28. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002;64:993–998

    Article  PubMed  CAS  Google Scholar 

  29. van Diest PJ. No consent should be needed for using leftover body material for scientific purposes. BMJ 2002;325:648–651

    Article  PubMed  Google Scholar 

  30. Bos R, Der Hoeven JJ, van der Wall E, van der Groep P, van Diest PJ, Comans EF, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20:379–387

    Article  PubMed  CAS  Google Scholar 

  31. Hooft L, van der Veldt AA, van Diest PJ, Hoekstra OS, Berkhof J, Teule GJ, et al. [18F]fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase i expression in the primary tumor. J Clin Endocrinol Metab 2005;90:328–334

    Article  PubMed  CAS  Google Scholar 

  32. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001;93:309–314

    Article  PubMed  CAS  Google Scholar 

  33. Havrilesky LJ, Kulasingam SL, Matchar DB, Myers ER. FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol 2005;97:183–191

    Article  PubMed  Google Scholar 

  34. von Schulthess GK. Positron emission tomography versus positron emission tomography/computed tomography: from “unclear” to “new-clear” medicine. Mol Imaging Biol 2004;6:183–187

    Article  Google Scholar 

  35. Amit A, Beck D, Lowenstein L, Lavie O, Bar SR, Kedar Z, et al. The role of hybrid PET/CT in the evaluation of patients with cervical cancer. Gynecol Oncol 2006;100:65–69

    Article  PubMed  Google Scholar 

  36. Tohma T, Okazumi S, Makino H, Cho A, Mochiduki R, Shuto K, et al. Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepatogastroenterology 2005;52:486–490

    PubMed  CAS  Google Scholar 

  37. Oka K, Suzuki Y, Nakano T. Expression of p27 and p53 in cervical squamous cell carcinoma patients treated with radiotherapy alone: radiotherapeutic effect and prognosis. Cancer 2000;88:2766–2773

    Article  PubMed  CAS  Google Scholar 

  38. Tjalma W, Van Marck E, Weyler J, Dirix L, Van Daele A, Goovaerts G, et al. Quantification and prognostic relevance of angiogenic parameters in invasive cervical cancer. Br J Cancer 1998;78:170–174

    Article  PubMed  CAS  Google Scholar 

  39. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63:1129–1136

    Article  PubMed  CAS  Google Scholar 

  40. Brenna SM, Zeferino LC, Pinto GA, Souza RA, Andrade LA, Vassalo J, et al. P53 expression as a predictor of recurrence in cervical squamous cell carcinoma. Int J Gynecol Cancer 2002;12:299–303

    Article  PubMed  Google Scholar 

  41. Davidson B, Goldberg I, Gotlieb WH, Lerner-Geva L, Ben Baruch G, Agulansky L, et al. Macrophage infiltration and angiogenesis in cervical squamous cell carcinoma—clinicopathologic correlation. Acta Obstet Gynecol Scand 1999;78:240–244

    Article  PubMed  CAS  Google Scholar 

  42. Tjalma WA, Weyler JJ, Bogers JJ, Pollefliet C, Baay M, Goovaerts GC, et al. The importance of biological factors (bcl-2, bax, p53, PCNA, MI, HPV and angiogenesis) in invasive cervical cancer. Eur J Obstet Gynecol Reprod Biol 2001;97:223–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Petra van der Groep for performing the HIF-1α staining, Wieteke Direcks, Marcelle van Gelder and Wil Dekker for help with the sectioning and immunohistochemistry, Ronald Boellaard and Marinke Westerterp for help with T/NT analysis and Amanda Kroonenberg-Kalwij for help with the patients’ files

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla F. M. Molthoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Veldt, A.A.M., Hooft, L., van Diest, P.J. et al. Microvessel density and p53 in detecting cervical cancer by FDG PET in cases of suspected recurrence. Eur J Nucl Med Mol Imaging 33, 1408–1416 (2006). https://doi.org/10.1007/s00259-006-0108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0108-4

Keywords

Navigation