Skip to main content

Advertisement

Log in

Radionuclide imaging of spinal infections

  • Review article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery.

Discussion

The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor 99mTc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and 67Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [18F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests.

Results

The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon.

Conclusion

In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including radiolabelled antibiotics, such as 99mTc-ciprofloxacin, and radiolabelled streptavidin-biotin complex. Antimicrobial peptides display preferential binding to microorganisms over human cells and perhaps new radiopharmaceuticals will be recruited from the array of human antimicrobial peptides/proteins. In experiments with Tc-ubiquicidin-derived peptides, radioactivity at the site of infection correlated well with the number of viable bacteria present. Finally, radiolabelled antifungal tracers could potentially distinguish fungal from bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Goethem JW, Parizel PM, van den Hauwe L, Van de Kelft E, Verlooy J, De Schepper AM. The value of MRI in the diagnosis of postoperative spondylodiscitis. Neuroradiology 2000;42:580–585

    PubMed  Google Scholar 

  2. Aydinli U, Karaeminogullari O, Tiskaya K. Postoperative deep wound infection in instrumented spinal surgery. Acta Orthop Belg 1999;65:182–187

    PubMed  CAS  Google Scholar 

  3. Ledermann HP, Kaim A, Bongartz G, Steinbrich W. Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol 2000;10:1815–1823

    PubMed  CAS  Google Scholar 

  4. Kaim AH, Gross T, von Schulthess GK. Imaging of chronic posttraumatic osteomyelitis. Eur Radiol 2002;12:1193–1202

    PubMed  Google Scholar 

  5. Roesgen M, Hierholzer G, Hax PM. Post-traumatic osteomyelitis. Pathophysiology and management. Arch Orthop Trauma Surg 1989;108:1–9

    PubMed  CAS  Google Scholar 

  6. Liebergall M, Chaimsky G, Lowe J, Robin GC, Floman Y. Pyogenic vertebral osteomyelitis with paralysis. Prognosis and treatment. Clin Orthop Relat Res 1991;269:142–150

    PubMed  Google Scholar 

  7. Widmer A. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis 2001;33:94–106

    Google Scholar 

  8. Brown EM, Pople IK, de Louvois J, Hedges A, Bayston R, Eisenstein SM, et al. Spine update: prevention of postoperative infection in patients undergoing spinal surgery. Spine 2004;29:938–945

    PubMed  Google Scholar 

  9. Wimmer C, Gluch H, Franzreb M, Ogon M. Predisposing factors for infection in spine surgery: a survey of 850 spinal procedures. J Spinal Disord 1998;11:112–124

    Google Scholar 

  10. Fang A, Hu SS, Endres N, Bradford DS. Risk factors for infection after spinal surgery. Spine 2005;30:1460–1465

    PubMed  Google Scholar 

  11. Richards BR, Emara KM. Delayed infections after posterior TSRH spinal instrumentation for idiopathic scoliosis: revisited. Spine 2001;26:1990–1996

    PubMed  CAS  Google Scholar 

  12. Hahn F, Zbinden R, Min K. Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J 2005;14:783–788

    PubMed  Google Scholar 

  13. Saraph VJ, Krismer M, Wimmer C. Operative treatment of scoliosis with the Kaneda anterior spine system. Spine 2005;30:1616–1620

    PubMed  Google Scholar 

  14. Rechtine GR, Bono PL, Cahill D, Bolesta MJ, Chrin AM. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma 2001;15:566–569

    PubMed  CAS  Google Scholar 

  15. Blam OG, Vaccaro AR, Vanichkachorn JS, Albert TJ, Hilibrand AS, Minnich JM, et al. Risk factors for surgical site infection in the patient with spinal injury. Spine 2003;28:1475–1480

    PubMed  Google Scholar 

  16. Deyo RA, Nachemson A, Mirza SK. Spinal-fusion surgery—the case for restraint. N Engl J Med 2004;350:722–726

    PubMed  CAS  Google Scholar 

  17. Turner JA, Ersek M, Herron L, Haselkorn J, Kent D, Ciol MA, et al. Patient outcomes after lumbar spinal fusions. JAMA 1992;268:907–911

    PubMed  CAS  Google Scholar 

  18. Deyo RA, Ciol MA, Cherkin DC, Loeser JD, Bigos SJ. Lumbar spinal fusion. A cohort study of complications, reoperations, and resource use in the Medicare population. Spine 1993;18:1463–1470

    PubMed  CAS  Google Scholar 

  19. Calderone RR, Larsen JM. Overview and classification of spinal infections. Orthop Clin North Am 1996;27:1–8

    PubMed  CAS  Google Scholar 

  20. Sapico FL, Montgomerie JZ. Pyogenic vertebral osteomyelitis: report of nine cases and review of the literature. Rev Infect Dis 1979;1:754–776

    PubMed  CAS  Google Scholar 

  21. Lew DP, Waldvogel FA. Current concepts: osteomyelitis. N Engl J Med 1997;336:999–1007

    PubMed  CAS  Google Scholar 

  22. Ozuna RM, Delamarter RB. Pyogenic vertebral osteomyelitis and postsurgical disc space infections. Orthop Clin North Am 1996;27:87–94

    PubMed  CAS  Google Scholar 

  23. Mader JT, Shirtliff ME, Bergquist SC, Calhoun J. Antimicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res 1999;360:47–65

    PubMed  Google Scholar 

  24. Ciampolini J, Harding KG. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad Med J 2000;76:479–483

    PubMed  CAS  Google Scholar 

  25. Tsukayama DT. Pathophysiology of posttraumatic osteomyelitis. Clin Orthop Relat Res 1999;360:22–29

    Google Scholar 

  26. Viola RW, King HA, Adler SM, Wilson CB. Delayed infection after elective spinal instrumentation and fusion. A retrospective analysis of eight cases. Spine 1997;22:2444–2450

    PubMed  CAS  Google Scholar 

  27. Clark CE, Shufflebarger HL. Late-developing infection in instrumented idiopathic scoliosis. Spine 1999;24:1909-1912

    PubMed  CAS  Google Scholar 

  28. Gemmel F, De Winter F, Van Laere K, Vogelaers D, Uyttendaele D, Dierckx RA. 99mTc ciprofloxacin imaging for the diagnosis of infection in the postoperative spine. Nucl Med Commun 2004;25:277–283

    PubMed  Google Scholar 

  29. Malawski SK, Lukawski S. Pyogenic infection of the spine. Clin Orthop Relat Res 1991;272:58–66

    PubMed  Google Scholar 

  30. Mader JT, Wang J, Calhoun JH. Antibiotic therapy for musculoskeletal infections. J Bone Joint Surg Am 2001;83-A:1878–1890

    Google Scholar 

  31. Rawlings CE, III, Wilkins RH, Gallis HA, Goldner JL, Francis R. Postoperative intervertebral disc space infection. Neurosurgery 1983;13:371–376

    PubMed  Google Scholar 

  32. Perry M. Erythrocyte sedimentation rate and C reactive protein in the assessment of suspected bone infection—are they reliable indices? J R Coll Surg Edinb 1996;41:116–118

    PubMed  CAS  Google Scholar 

  33. Perry CR, Pearson RL, Miller GA. Accuracy of cultures of material from swabbing of the superficial aspect of the wound and needle biopsy in the preoperative assessment of osteomyelitis. J Bone Joint Surg Am 1991;73:745–749

    PubMed  CAS  Google Scholar 

  34. Tyrrell PN, Cassar-Pullicino VN, McCall IW. Spinal infection. Eur Radiol 1999;9:1066–1077

    PubMed  CAS  Google Scholar 

  35. Wing VW, Jeffrey RB, Federle MP, Helms CA, Trafton P. Chronic osteomyelitis examined by CT. Radiology 1985;154:171–174

    PubMed  CAS  Google Scholar 

  36. Gold RH, Hawkins RA, Katz RD. Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol 1991;157:365–370

    PubMed  CAS  Google Scholar 

  37. Modic MT, Feiglin DH, Piraino DW, Boumphrey F, Weinstein MA, Duchesneau PM, et al. Vertebral osteomyelitis: assessment using MR. Radiology 1985;157:157–166

    PubMed  CAS  Google Scholar 

  38. Ma LD, Frassica FJ, Bluemke DA, Fishman EK. CT and MRI evaluation of musculoskeletal infection. Crit Rev Diagn Imaging 1997;38:535–568

    PubMed  CAS  Google Scholar 

  39. Stabler A, Reiser MF. Imaging of spinal infection. Radiol Clin North Am 2001;39:115–135

    PubMed  CAS  Google Scholar 

  40. Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA. MR imaging findings in spinal infections: rules or myths? Radiology 2003;228:506–514

    PubMed  Google Scholar 

  41. Struk DW, Munk PL, Lee MT, Ho SGF, Worsley DF. Imaging of soft tissue infections. Radiol Clin North Am 2001;39:277–303

    PubMed  CAS  Google Scholar 

  42. Grane P, Josephsson A, Seferlis A, Tullberg T. Septic and aseptic post-operative discitis in the lumbar spine: evaluation by MR imaging. Acta Radiol 1998;39:108–115

    PubMed  CAS  Google Scholar 

  43. Kylanpaa-Back ML, Suominen RA, Salo SA, Soiva M, Korkala OL, Mokka RE. Postoperative discitis: outcome and late magnetic resonance image evaluation of ten patients. Ann Chir Gynaecol 1999;88:61–64

    PubMed  CAS  Google Scholar 

  44. Gratz S, Dörner J, Oestmann JW, Opitz M, Behr T, Meller J, et al. 67Ga-citrate and 99Tc-MDP for estimating the severity of vertebral osteomyelitis. Nucl Med Commun 2000;21:111–120

    PubMed  CAS  Google Scholar 

  45. Love C, Patel M, Lonner BS, Tomas MB, Palestro CJ. Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 2000;25:963–977

    PubMed  CAS  Google Scholar 

  46. Adatepe MH, Powell OM, Isaacs GH, Nichols K, Cefola R. Hematogenous pyogenic vertebral osteomyelitis: diagnostic value of radionuclide bone imaging. J Nucl Med 1986;27:1680–1685

    PubMed  CAS  Google Scholar 

  47. Palestro CJ, Kim CK, Swyer AJ, Vallabhajosula S, Goldsmith SJ. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99 m-methylene diphosphonate bone scintigraphy. J Nucl Med 1991;32:1861–1865

    PubMed  CAS  Google Scholar 

  48. Lisbona R, Derbekyan V, Novales-Diaz J, Veksler A. Gallium-67 scintigraphy in tuberculous and nontuberculous infectious spondylitis. J Nucl Med 1993;34:853–859

    PubMed  CAS  Google Scholar 

  49. Maurer AH, Chen DC, Camargo EE, Wong DF, Wagner HN, Alderson PO. Utility of three-phase skeletal scintigraphy in suspected osteomyelitis: concise communication. J Nucl Med 1981;22:941–949

    PubMed  CAS  Google Scholar 

  50. Bahk YW, Kim OH, Chung SK. Pinhole collimator scintigraphy in differential diagnosis of metastasis, fracture, and infections of the spine. J Nucl Med 1987;28:447–451

    PubMed  CAS  Google Scholar 

  51. Deutsch SD, Gandsman EJ, Spraragen SC. Quantitative regional blood-flow analysis and its clinical application during routine bone-scanning. J Bone Joint Surg Am 1981;63:295–305

    PubMed  CAS  Google Scholar 

  52. Schlaeffer F, Mikolich DJ, Mates SM. Technetium Tc 99 m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis. Arch Intern Med 1987;147:2024–2026

    PubMed  CAS  Google Scholar 

  53. Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med 1994;24:128–141

    PubMed  CAS  Google Scholar 

  54. Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med 1997;27:334–345

    PubMed  CAS  Google Scholar 

  55. Hadjipavlou AG, Cesani-Vazquez F, Villaneuva-Meyer J, Mader JT, Necessary JT, Crow W, et al. The effectiveness of gallium citrate Ga 67 radionuclide imaging in vertebral osteomyelitis revisited. Am J Orthop 1998;27:179–183

    PubMed  CAS  Google Scholar 

  56. Lin WY, Tsai SC, Chao TH, Wang SJ. Uptake of gallium-67 citrate in clean surgical incisions after colorectal surgery. Eur J Nucl Med 2001;28:369–372

    PubMed  CAS  Google Scholar 

  57. Gratz S, Dorner J, Fischer U, Behr TM, Behe M, Altenvoerde G, et al. F-18-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med Mol Imaging 2002;29:516–524

    PubMed  CAS  Google Scholar 

  58. Gratz S, Braun HG, Behr TM, Meller J, Herrmann A, Conrad M, et al. Photopenia in chronic vertebral osteomyelitis with technetium-99 m-antigranulocyte antibody (BW 250/183). J Nucl Med 1997;38:211–216

    PubMed  CAS  Google Scholar 

  59. Vinjamuri S, Hall AV, Solanki KK, Bomanji J, Siraj Q, O’Shaughnessy E, et al. Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet 1996;347:233–235

    PubMed  CAS  Google Scholar 

  60. Britton KE, Vinjamuri S, Hall AV, Solanki K, Siraj QH, Bomanji J, et al. Clinical evaluation of technetium-99 m infecton for the localisation of bacterial infection. Eur J Nucl Med 1997;24:553–556

    PubMed  CAS  Google Scholar 

  61. Hall AV, Solanki KK, Vinjamuri S, Britton KE, Das SS. Evaluation of the efficacy of 99mTc-Infecton, a novel agent for detecting sites of infection. J Clin Pathol 1998;51:215–219

    Article  PubMed  CAS  Google Scholar 

  62. De Winter F, Gemmel F, Van Laere K, De Winter O, Poffijn B, Dierckx RA, et al. 99mTc-ciprofloxacin planar and tomographic imaging for the diagnosis of infection in the postoperative spine: experience in 48 patients. Eur J Nucl Med Mol Imaging 2004;31:233–239

    PubMed  Google Scholar 

  63. Sarda L, Saleh-Mghir A, Peker C, Meulemans A, Cremieux AC, Le Guludec D. Evaluation of 99mTc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection. J Nucl Med 2002;43:239–245

    PubMed  Google Scholar 

  64. Siaens RH, Rennen HJ, Boerman OC, Dierckx R, Slegers G. Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. J Nucl Med 2004;45:2088–2094

    PubMed  CAS  Google Scholar 

  65. Fournier B, Zhao X, Lu T, Drlica K, Hooper DC. Selective targeting of topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob Agents Chemother 2000;44:2160–2165

    PubMed  CAS  Google Scholar 

  66. Cremieux AC, Mghir AS, Bleton R, Manteau M, Belmatoug N, Massias L, et al. Efficacy of sparfloxacin and autoradiographic diffusion pattern of [14C]sparfloxacin in experimental Staphylococcus aureus joint prosthesis infection. Antimicrob Agents Chemother 1996;40:2111–2116

    PubMed  CAS  Google Scholar 

  67. Walters JD, Zhang F, Nakkula RJ. Mechanisms of fluoroquinolone transport by human neutrophils. Antimicrob Agents Chemother 1999;43:2710–2715

    PubMed  CAS  Google Scholar 

  68. Bounds SJ, Nakkula R, Walters JD. Fluoroquinolone transport by human monocytes: characterization and comparison to other cells of myeloid lineage. Antimicrob Agents Chemother 2000;44:2609–2614

    PubMed  CAS  Google Scholar 

  69. Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH. Technetium-99 m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 2000;27:292–301

    PubMed  CAS  Google Scholar 

  70. Dumarey N, Blocklet D, Appelboom T, Tant L, Schoutens A. Infecton is not specific for bacterial osteo-articular infective pathology. Eur J Nucl Med Mol Imaging 2002;29:530–535

    PubMed  CAS  Google Scholar 

  71. Skehan SJ, White JF, Evans JW, Parry-Jones DR, Solanki CK, Ballinger JR, et al. Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med 2003;44:11–18

    PubMed  CAS  Google Scholar 

  72. Pandey R, Berendt AR, Athanasou NA. Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. The OSIRIS Collaborative Study Group. Oxford Skeletal Infection Research and Intervention Service. Arch Orthop Trauma Surg 2000;120:570–574

    PubMed  CAS  Google Scholar 

  73. Sarda L, Cremieux AC, Lebellec Y, Meulemans A, Lebtahi R, Hayem G, et al. Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J Nucl Med 2003;44:920–926

    PubMed  Google Scholar 

  74. Palestro CJ. Nuclear medicine, the painful prosthetic joint, and orthopedic infection. J Nucl Med 2003;44:927–929

    PubMed  Google Scholar 

  75. Lazzeri E, Manca M, Molea N, Marchetti S, Consoli V, Bodei L, et al. Clinical validation of the avidin/indium-111 biotin approach for imaging infection/inflammation in orthopaedic patients. Eur J Nucl Med 1999;26:606–614

    PubMed  CAS  Google Scholar 

  76. Lazzeri E, Pauwels EK, Erba PA, Volterrani D, Manca M, Bodei L, et al. Clinical feasibility of two-step streptavidin/111In-biotin scintigraphy in patients with suspected vertebral osteomyelitis. Eur J Nucl Med Mol Imaging 2004;31:1505–1511

    PubMed  Google Scholar 

  77. Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, et al. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 1996;10:185–191

    Article  PubMed  CAS  Google Scholar 

  78. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998;206:749–754

    PubMed  CAS  Google Scholar 

  79. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 1998;25:1238–1243

    PubMed  CAS  Google Scholar 

  80. Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med 2000;27:524–528

    PubMed  CAS  Google Scholar 

  81. Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG-PET. Eur J Nucl Med 2000;27:822–832

    PubMed  CAS  Google Scholar 

  82. De Winter F, Van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 2001;83-A:651–660

    PubMed  Google Scholar 

  83. De Winter F, Vogelaers D, Gemmel F, Dierckx RA. Promising role of 18-F-fluoro-D-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 2002;21:247–257

    PubMed  Google Scholar 

  84. Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun 2003;24:615–624

    PubMed  CAS  Google Scholar 

  85. El Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med 2004;34:313–329

    PubMed  Google Scholar 

  86. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–1306

    PubMed  CAS  Google Scholar 

  87. Kaim AH, Weber B, Kurrer MO, Gottschalk J, von Schulthess GK, Buck A. Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 2002;223:446–451

    PubMed  Google Scholar 

  88. Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, et al. 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 2002;29:648–654

    PubMed  CAS  Google Scholar 

  89. Stumpe KDM, Zanetti M, Weishaupt D, Hodler J, Boos N, von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 2002;179:1151–1157

    PubMed  Google Scholar 

  90. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Fluorine-18-FDG PET and technetium-99 m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998;39:2145–2152

    PubMed  CAS  Google Scholar 

  91. Schiesser M, Stumpe KDM, Trentz O, Kossmann T, von Schulthess GK. Detection of metallic implant-associated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology 2003;226:391–398

    PubMed  Google Scholar 

  92. De Winter F, Gemmel F, Van de Wiele C, Poffijn B, Uyttendaele D, Dierckx R. 18-Fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine 2003;28:1314–1319

    PubMed  Google Scholar 

  93. Rothman SLG. The diagnosis of infections of the spine by modern imaging techniques. Orthop Clin North Am 1996;27:15–31

    PubMed  CAS  Google Scholar 

  94. Mody DR, Esses SI, Heggeness MH. A histologic-study of soft-tissue reactions to spinal implants. Spine 1994;19:1153–1156

    PubMed  CAS  Google Scholar 

  95. De Winter F, Huysse W, De Paepe P, Lambert B, Poffyn B, Dierckx R. High F-18FDG uptake in a paraspinal textiloma. Clin Nucl Med 2002;27:132–133

    PubMed  Google Scholar 

  96. De Winter F, Van de Wiele C, de Clercq D, Vogelaers D, De Bondt P, Dierckx RA. Aseptic loosening of a knee prosthesis as imaged on FDG positron emission tomography. Clin Nucl Med 2000;25:923

    PubMed  Google Scholar 

  97. Van Acker F, Nuyts J, Maes A et al. FDG-PET, Tc-99 m-HMPAO white blood cell SPET and bone scintigraphy in the evaluation of painful total knee arthroplasties. Eur J Nucl Med 2001;28:1496–1504

    PubMed  Google Scholar 

  98. Love C, Marwin SE, Tomas MB, Krauss ES, Tronco GG, Bhargava KK, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging. J Nucl Med 2004;45:1864–1871

    PubMed  Google Scholar 

  99. Zhuang H, Sam JW, Chacko TK, Duarte PS, Hickeson M, Feng Q, et al. Rapid normalization of osseous FDG uptake following traumatic or surgical fractures. Eur J Nucl Med Mol Imaging 2003;30:1096–1103

    PubMed  Google Scholar 

  100. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–1980

    PubMed  CAS  Google Scholar 

  101. Jones-Jackson L, Walker R, Purnell G, McLaren SG, Skinner RA, Thomas JR, et al. Early detection of bone infection and differentiation from post-surgical inflammation using 2-deoxy-2-[18F]-fluoro-d-glucose positron emission tomography (FDG-PET) in an animal model. J Orthop Res 2005;23:1484–1489

    PubMed  CAS  Google Scholar 

  102. Chianelli M, Mather SJ, Martin-Comin J, Signore A. Radiopharmaceuticals for the study of inflammatory processes: a review. Nucl Med Commun 1997;18:437–455

    PubMed  CAS  Google Scholar 

  103. Schmitz A, Risse HJ, Kalicke T, Grunwald F, Schmitt O. FDG-PET for diagnosis and follow-up of inflammatory processes: first results from an orthopedic view. Zeitschrift fur Orthopadie und Ihre Grenzgebiete 2000;138:407–412

    PubMed  CAS  Google Scholar 

  104. Stadler P, Bilohlavek O, Spacek M, Michalek P. Diagnosis of vascular prosthesis infection with FDG-PET/CT. J Vasc Surg 2004;40:1246–1247

    PubMed  Google Scholar 

  105. Wyss MT, Honer M, Spath N, Gottschalk J, Ametamey SM, Weber B, et al. Influence of ceftriaxone treatment on FDG uptake-an in vivo [18F]-fluorodeoxyglucose imaging study in soft tissue infections in rats. Nucl Med Biol 2004;31:875–882

    PubMed  CAS  Google Scholar 

  106. Tali ET, Gultekin S. Spinal infections. Eur Radiol 2005;15:599–607

    PubMed  Google Scholar 

  107. Seabold JE, Nepola JV. Imaging techniques for evaluation of postoperative orthopedic infections. Q J Nucl Med 1999;43:21–28

    PubMed  CAS  Google Scholar 

  108. Welling MM, Nibbering PH, Paulusma-Annema A, Hiemstra PS, Pauwels EK, Calame W. Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med 1999;40:2073–2080

    PubMed  CAS  Google Scholar 

  109. Welling MM, Lupetti A, Balter HS, Lanzzeri S, Souto B, Rey AM, et al. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J Nucl Med 2001;42:788–794

    PubMed  CAS  Google Scholar 

  110. Nibbering PH, Welling MM, Paulusma-Annema A, Brouwer CP, Lupetti A, Pauwels EK. 99mTc-labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus. J Nucl Med 2004;45:321–326

    PubMed  CAS  Google Scholar 

  111. Lupetti A, Welling MM, Mazzi U, Nibbering PH, Pauwels EK. Technetium-99 m labelled fluconazole and antimicrobial peptides for imaging of Candida albicans and Aspergillus fumigatus infections. Eur J Nucl Med Mol Imaging 2002;29:674–679

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Gemmel.

Additional information

This paper is dedicated to the memory of Frederic De Winter and his daughter Ibe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemmel, F., Dumarey, N. & Palestro, C.J. Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 33, 1226–1237 (2006). https://doi.org/10.1007/s00259-006-0098-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0098-2

Keywords

Navigation