Skip to main content

Advertisement

Log in

Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Quantitative image reconstruction in positron emission tomography (PET) requires an accurate attenuation map of the object under study for the purpose of attenuation correction. Current dual-modality PET/CT systems offer significant advantages over stand-alone PET, including decreased overall scanning time and increased accuracy in lesion localisation and detectability. However, the contamination of CT data with scattered radiation and misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) are known to generate artefacts in the attenuation map and thus the resulting PET images. The purpose of this work was to quantitatively measure the impact of scattered radiation and contrast medium on the accuracy of CTAC.

Methods

Our recently developed MCNP4C-based Monte Carlo X-ray CT simulator for modelling both fan- and cone-beam CT scanners and the Eidolon dedicated 3D PET Monte Carlo simulator were used to generate realigned PET/CT data sets. The impact of X-ray scattered radiation on the accuracy of CTAC was investigated through simulation of a uniform cylindrical water phantom for both a commercial fan-beam multi-slice and a prototype cone-beam flat panel detector-based CT scanner. The influence of contrast medium was studied by simulation of a cylindrical phantom containing different concentrations of contrast medium. Moreover, an experimental study using an anthropomorphic striatal phantom was conducted for quantitative evaluation of errors arising from the presence of contrast medium by calculating the apparent recovery coefficient (ARC) in the presence of different concentrations of contrast medium.

Results

The analysis of attenuation correction factors (ACFs) for the simulated cylindrical water phantom in both fan- and cone-beam CT scanners showed that the contamination of CT data with scattered radiation in the absence of scatter removal causes underestimation of the true ACFs, namely by 7.3% and 28.2% in the centre for the two geometries, respectively. The ARC was 190.7% for a cylindrical volume of interest located in the main chamber of the striatal phantom containing contrast medium corresponding to 2,000 Hounsfield units, whereas the ARC was overestimated by less than 5% for the main chamber and by ∼2% for the left/right putamen and caudate nucleus compared with the absence of contrast medium.

Conclusion

Without X-ray scatter compensation, the visual artefacts and quantitative errors in flat panel detector-based cone-beam geometry are substantial and propagate cupping artefacts to PET images during CTAC. Likewise, contrast-enhanced CT images may create considerable artefacts during CTAC in regions containing high concentrations of contrast medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Townsend DW, Carney JPJ, Yap JT, Hall NC. PET/CT today and tomorrow. J Nucl Med 2004;45:4s–14s

    PubMed  Google Scholar 

  2. Hasegawa BH, Zaidi H. Dual-modality imaging: more than the some of its components. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. Berlin Heidelberg New York: Springer; 2005; p. 35–81

    Google Scholar 

  3. Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291–315

    PubMed  Google Scholar 

  4. Antoch G, Freudenberg LS, Stattaus J, Jentzen W, Mueller SP, Debatin JF, et al. Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR Am J Roentgenol 2002;179:1555–1560

    PubMed  Google Scholar 

  5. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med 2004;45:56S–95S

    PubMed  CAS  Google Scholar 

  6. Antoch G, Kuehl H, Kanja J, Lauenstein TC, Schneemann H, Hauth E, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004;230:879–885

    PubMed  Google Scholar 

  7. Dizendorf EV, Treyer V, Von Schulthess GK, Hany TF. Application of oral contrast media in coregistered positron emission tomograhy-CT. AJR 2002;179:477–481

    PubMed  Google Scholar 

  8. Nehmeh SA, Erdi YE, Kalaigian H, Kolbert KS, Pan T, Yeung H, et al. Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. J Nucl Med 2003;44:1940–1944

    PubMed  Google Scholar 

  9. Nakamoto Y, Chin BB, Kraitchman DL, Lawler LP, Marshall LT, Wahl RL. Effects of nonionic intravenous contrast agents in PET/CT imaging: phantom and canine studies. Radiology 2003;227:817–824

    PubMed  Google Scholar 

  10. Yau Y-Y, Chan W-S, Tam Y-M, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 2005;46:283–291

    PubMed  Google Scholar 

  11. Dizendorf E, Hany TF, Buck A, von Schulthess GK, Burger Cl. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 2003;44:732–738

    PubMed  Google Scholar 

  12. DiFilippo FP, Brunken RC. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med 2005;46:436–443

    PubMed  Google Scholar 

  13. Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002;29:367–370

    Article  PubMed  CAS  Google Scholar 

  14. Goerres GW, Ziegler SI, Burger C, Berthold T, Von Schulthess GK, Buck A. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003;226:577–584

    PubMed  Google Scholar 

  15. Kamel E, Burger C, Buck A, Von Schulthess GK, Goerres G. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003;13:724–728

    PubMed  Google Scholar 

  16. Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003;226:906–910

    PubMed  Google Scholar 

  17. Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 2003;30:603–606

    Article  PubMed  Google Scholar 

  18. Kanamori H, Nakamori N, Inoue K, Takenaka E. Effect of scattered x-ray on CT images. Phys Med Biol 1985;30:239–249

    Article  PubMed  CAS  Google Scholar 

  19. Colijn AP, Beekman FJ. Accelerated simulation of cone beam X-ray scatter projections. IEEE Trans Med Imaging 2004;23:584–590

    Article  PubMed  CAS  Google Scholar 

  20. Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 2001;28:220–231

    Article  PubMed  CAS  Google Scholar 

  21. Ning R, Tang X. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 2004;31:1195–1202

    Article  PubMed  Google Scholar 

  22. Ohnesorge B, Flohr T, Klingenbeck-Regn K. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 1999;9:563–569

    Article  PubMed  CAS  Google Scholar 

  23. Tofts PS, Gore JC. Some sources of artefact in computed tomography. Phys Med Biol 1980;25:117–127

    Article  PubMed  CAS  Google Scholar 

  24. Glover GH. Compton scatter effects in CT reconstructions. Med Phys 1982;9:860–867

    Article  PubMed  CAS  Google Scholar 

  25. Johns PC, Yaffe M. Scattered radiation in fan beam imaging systems. Med Phys 1982;9:231–239

    Article  PubMed  CAS  Google Scholar 

  26. Joseph PM, Spital RD. The effects of scatter in x-ray computed tomography. Med Phys 1982;9:464–472

    Article  PubMed  CAS  Google Scholar 

  27. Merritt RB, Chenery SG. Quantitative CT measurements: the effect of scatter acceptance and filter characteristics on the EMI 7070. Phys Med Biol 1986;31:55–63

    Article  PubMed  CAS  Google Scholar 

  28. Endo M, Tsunoo T, Nakamori N, Yoshida K. Effect of scatter radiation on image noise in cone beam CT. Med Phys 2001;28:469–474

    Article  PubMed  CAS  Google Scholar 

  29. Malusek A, Seger MM, Sandborg M, Alm Carlsson G. Effect of scatter on reconstructed image quality in cone beam computed tomography: evaluation of a scatter-reduction optimisation function. Radiat Prot Dosimetry 2005;114:337–340

    Article  PubMed  Google Scholar 

  30. Ay MR, Zaidi H. Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam x-ray CT. Phys Med Biol 2005;50:4863–885

    Article  PubMed  CAS  Google Scholar 

  31. Digby WM, Hoffman EJ. An investigation of scatter in attenuation correction for PET. IEEE Trans Nucl Sci 1989;36:1038–1042

    Article  CAS  Google Scholar 

  32. Wegmann K, Adam L-E, Livieratos L, Zaers J, Bailey DL, Brix G. Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 1999;46:1184–1190

    Article  Google Scholar 

  33. Dahlbom M, Hoffman E. Problems in signal-to-noise ratio for attenuation correction in high resolution PET. IEEE Trans Nucl Sci 1987;34:288–293

    Article  Google Scholar 

  34. Bai C, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50:1510–1515

    Article  Google Scholar 

  35. Tang HR, Brown JK, Da Silva AJ, Matthay KK, Price DC, Huberty JP, et al. Implementation of a combined X-ray CT-scintillation camera imaging system for localizing and measuring radionuclide uptake: experiments in phantoms and patients. IEEE Trans Nucl Sci 1999;46:551–557

    Article  Google Scholar 

  36. Carney J, Beyer T, Brasse D, Yap JT, Townsend DW. CT-based attenuation correction for PET/CT scanners in the presence of contrast agent. IEEE Nucl Sc Symp Conf Rec 2002;3:1443–1446

    Google Scholar 

  37. Zaidi H, Scheurer AH, Morel C. An object-oriented Monte Carlo simulator for 3D cylindrical positron tomographs. Comput Methods Programs Biomed 1999;58:133–145

    Article  PubMed  CAS  Google Scholar 

  38. Ay M, Shahriari M, Sarkar S, Adib M, Zaidi H. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C. Phys Med Biol 2004;49:4897–4917

    Article  PubMed  CAS  Google Scholar 

  39. Zaidi H. Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 2000;27:1813–1826

    Article  PubMed  CAS  Google Scholar 

  40. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, et al. XCOM: photon cross sections database. NBSIR 87–3597. 1998; http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

  41. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904–911

    PubMed  CAS  Google Scholar 

  42. Zaidi H, Koral KF. Satter modelling and compensation in emission tomography. Eur J Nucl Med 2004;31:761–782

    Article  Google Scholar 

  43. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hojgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167–1175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation under grant SNSF 3152A0–102143. The authors would like to thank Dr. O.G. Rousset for providing the PVC software and F. Schoenahl, T. Ruest and N. Andreini, for their valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ay, M.R., Zaidi, H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 33, 1301–1313 (2006). https://doi.org/10.1007/s00259-006-0086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0086-6

Keywords

Navigation