Skip to main content

Advertisement

Log in

Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Myocardial flow reserve (MFR) measurement has an important role in assessing the functional severity of coronary artery stenosis. However, a discrepancy between the anatomical severity of coronary artery stenosis and MFR is often observed. Such a discrepancy may be explained by coronary risk factors. In this study, we aimed to investigate the influence of coronary artery stenosis severity and risk factors on MFR.

Methods

Seventy-four patients suspected to have coronary artery disease and seven age-matched healthy volunteers were enrolled. Myocardial blood flow (MBF) and MFR were measured using 15O-labelled water PET. Regional MFR was calculated in regions with significant coronary artery stenosis (stenotic regions) and in regions without significant stenosis (remote regions). The contributions of coronary artery stenosis severity and coronary risk factors were assessed using univariate and multivariate analyses.

Results

In stenotic regions, MFR correlated inversely with coronary artery stenosis severity (r=−0.50, p<0.01). Univariate analysis did not show any significant difference in MFR between the patients with and the patients without each risk factor. In remote regions, however, MFR was significantly decreased in the diabetes and smoking groups (each p<0.05). By multivariate analysis, diabetes and smoking were independent predictors of MFR (each p<0.05). In the group with more than one risk factor, MFR was significantly lower (2.78±0.79) than in the other group (3.40±1.22, p<0.05).

Conclusion

MFR is influenced not only by coronary stenosis severity but also by coronary risk factors. In particular, the influence of risk factors should be considered in regions without severe coronary stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30(6):1472–1477

    Article  PubMed  CAS  Google Scholar 

  2. Yokoyama I, Ohtake T, Momomura S, Yonekura K, Woo-Soo S, Nishikawa J, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47(1):119–124

    PubMed  CAS  Google Scholar 

  3. Opherk D, Mall G, Zebe H, Schwarz F, Weihe E, Manthey J, et al. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation 1984;69(1):1–7

    PubMed  CAS  Google Scholar 

  4. Treasure CB, Klein JL, Vita JA, Manoukian SV, Renwick GH, Selwyn AP, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993;87(1):86–93

    PubMed  CAS  Google Scholar 

  5. Kozakova M, Palombo C, Pratali L, Pittella G, Galetta F, L’Abbate A. Mechanisms of coronary flow reserve impairment in human hypertension. An integrated approach by transthoracic and transesophageal echocardiography. Hypertension 1997;29(2):551–559

    PubMed  CAS  Google Scholar 

  6. Laine H, Raitakari OT, Niinikoski H, Pitkanen OP, Iida H, Viikari J, et al. Early impairment of coronary flow reserve in young men with borderline hypertension. J Am Coll Cardiol 1998;32(1):147–153

    Article  PubMed  CAS  Google Scholar 

  7. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90(2):808–817

    PubMed  CAS  Google Scholar 

  8. Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 1996;94(12):3232–3238

    PubMed  CAS  Google Scholar 

  9. Yokoyama I, Ohtake T, Momomura S, Yonekura K, Nishikawa J, Sasaki Y, et al. Impaired myocardial vasodilation during hyperemic stress with dipyridamole in hypertriglyceridemia. J Am Coll Cardiol 1998;31(7):1568–1574

    Article  PubMed  CAS  Google Scholar 

  10. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36(1):103–109

    Article  PubMed  CAS  Google Scholar 

  11. Czernin J, Sun K, Brunken R, Bottcher M, Phelps M, Schelbert H. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation 1995;91(12):2891–2897

    PubMed  CAS  Google Scholar 

  12. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 2000;102(11):1233–1238

    PubMed  CAS  Google Scholar 

  13. Wangler RD, Peters KG, Marcus ML, Tomanek RJ. Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasodilator reserve. Circ Res 1982;51(1):10–18

    PubMed  CAS  Google Scholar 

  14. Vogt M, Motz W, Strauer BE. Coronary haemodynamics in hypertensive heart disease. Eur Heart J 1992;13(Suppl D):44–49

    PubMed  Google Scholar 

  15. Gimelli A, Schneider-Eicke J, Neglia D, Sambuceti G, Giorgetti A, Bigalli G, et al. Homogeneously reduced versus regionally impaired myocardial blood flow in hypertensive patients: two different patterns of myocardial perfusion associated with degree of hypertrophy. J Am Coll Cardiol 1998;31(2):366–373

    Article  PubMed  CAS  Google Scholar 

  16. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88(1):62–69

    PubMed  CAS  Google Scholar 

  17. Uren NG, Camici PG, Melin JA, Bol A, de Bruyne B, Radvan J, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36(11):2032–2036

    PubMed  CAS  Google Scholar 

  18. Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y, et al. Assessment of coronary function in children with a history of Kawasaki disease using 15O-water positron emission tomography. Circulation 2002;105(24):2878–2884

    Article  PubMed  Google Scholar 

  19. Iwado Y, Yoshinaga K, Furuyama H, Ito Y, Noriyasu K, Katoh C, et al. Decreased endothelium-dependent coronary vasomotion in healthy young smokers. Eur J Nucl Med Mol Imaging 2002;29(8):984–990

    Article  PubMed  CAS  Google Scholar 

  20. Miyagawa M, Kumano S, Sekiya M, Watanabe K, Akutzu H, Imachi T, et al. Thallium-201 myocardial tomography with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. J Am Coll Cardiol 1995;26(5):1196–1201

    Article  PubMed  CAS  Google Scholar 

  21. Watanabe K, Sekiya M, Ikeda S, Miyagawa M, Kinoshita M, Kumano S. Comparison of adenosine triphosphate and dipyridamole in diagnosis by thallium-201 myocardial scintigraphy. J Nucl Med 1997;38(4):577–581

    PubMed  CAS  Google Scholar 

  22. Katoh C, Ruotsalainen U, Laine H, Alenius S, Iida H, Nuutila P, et al. Iterative reconstruction based on median root prior in quantification of myocardial blood flow and oxygen metabolism. J Nucl Med 1999;40(5):862–867

    PubMed  CAS  Google Scholar 

  23. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330(25):1782–1788

    Article  PubMed  CAS  Google Scholar 

  24. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91(7):1944–1951

    PubMed  Google Scholar 

  25. Kaufmann PA, Frielingsdorf J, Mandinov L, Seiler C, Hug R; Hess OM. Reversal of abnormal coronary vasomotion by calcium antagonists in patients with hypercholesterolemia. Circulation 1998;97(14):1348–1354

    PubMed  CAS  Google Scholar 

  26. Vicario ML, Cirillo L, Storto G, Pellegrino T, Ragone N, Fontanella L, et al. Influence of risk factors on coronary flow reserve in patients with 1-vessel coronary artery disease. J Nucl Med 2005;46(9):1438–1443

    PubMed  Google Scholar 

  27. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994;331(4):222–227

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara M, Tamura T, Yoshida K, Nakagawa K, Nakao M, Yamanouchi M, et al. Coronary flow reserve in angiographically normal coronary arteries with one-vessel coronary artery disease without traditional risk factors. Eur Heart J 2001;22(6):479–487

    Article  PubMed  CAS  Google Scholar 

  29. Gould KL, Martucci JP, Goldberg DI, Hess MJ, Edens RP, Latifi R, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 1994;89(4):1530–1538

    PubMed  CAS  Google Scholar 

  30. Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995;332(8):481–487

    Article  PubMed  CAS  Google Scholar 

  31. Huggins GS, Pastemak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 1998;98(13):1291–1296

    PubMed  CAS  Google Scholar 

  32. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99(4):475–481

    PubMed  CAS  Google Scholar 

  33. Yokoyama I, Momomura S, Ohtake T, Yonekura K, Yang W, Kobayakawa N, et al. Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation 1999;100(2):117–122

    PubMed  CAS  Google Scholar 

  34. Vita JA, Yeung AC, Winniford M, Hodgson JM, Treasure CB, Klein JL, et al. Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation 2000;102(8):846–851

    PubMed  CAS  Google Scholar 

  35. Gistri R, Ebert AG, Palombo C, Marabotti C, Choudhury L, Camici PG. Effect of blood pressure lowering on coronary vasodilator reserve in arterial hypertension. Cardiovasc Drugs Ther 1994;8(1):169–171

    Article  PubMed  CAS  Google Scholar 

  36. Frielingsdorf J, Seiler C, Kaufmann P, Vassalli G, Suter T, Hess OM. Normalization of abnormal coronary vasomotion by calcium antagonists in patients with hypertension. Circulation 1996;93(7):1380–1387

    PubMed  CAS  Google Scholar 

  37. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 1996;27(5):1031–1038

    PubMed  CAS  Google Scholar 

  38. Billinger M, Seiler C, Fleisch M, Eberli FR, Meier B, Hess OM. Do beta-adrenergic blocking agents increase coronary flow reserve? J Am Coll Cardiol 2001;38(7):1866–1871

    Article  PubMed  CAS  Google Scholar 

  39. Galderisi M, Cicala S, D’Errico A, de Divitiis O, de Simone G. Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease. J Hypertens 2004;22(11):2201–2208

    Article  PubMed  CAS  Google Scholar 

  40. Iida H, Rhodes CG, Araujo LI, Yamamoto Y, de Silva R, Maseri A, et al. Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 15O2 inhalation and positron emission tomography. Theory, error analysis, and application in humans. Circulation 1996;94(4):792–807

    PubMed  CAS  Google Scholar 

  41. Wisenberg G, Schelbert HR, Hoffman EJ, Phelps ME, Robinson GD Jr, Selin CE, et al. In vivo quantitation of regional myocardial blood flow by positron-emission computed tomography. Circulation 1981;63(6):1248–1258

    PubMed  CAS  Google Scholar 

  42. de Silva R, Camici PG. Role of positron emission tomography in the investigation of human coronary circulatory function. Cardiovasc Res 1994;28(11):1595–1612

    Article  PubMed  Google Scholar 

  43. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349(11):1027–1035

    Article  PubMed  CAS  Google Scholar 

  44. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105(2):186–193

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagara Tamaki.

Additional information

This study received no financial sponsorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, T., Morita, K., Naya, M. et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging 33, 1150–1156 (2006). https://doi.org/10.1007/s00259-006-0082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0082-x

Keywords

Navigation