Skip to main content

Advertisement

Log in

Comparative value of brain perfusion SPECT and [123I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac 123I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer’s disease (AD).

Methods

The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[123I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections.

Results

Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT.

Conclusion

MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, et al. Dementia with Lewy bodies. Lancet Neurol 2004;3:19–28

    Article  PubMed  Google Scholar 

  2. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47:1113–24

    PubMed  Google Scholar 

  3. Albin RL, Minoshima S, D’Amato CJ, Frey KA, Kuhl DA, Sima AAF. Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 1996;47:462–6

    PubMed  Google Scholar 

  4. Ishii K, Imamura T, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 1998;51:125–30

    PubMed  Google Scholar 

  5. Higuchi M, Tashiro M, Arai H, Okamura N, Hara S, Higuchi S, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol 2000;162:247–56

    Article  PubMed  Google Scholar 

  6. Minoshima S, Foster NL, Sima AAF, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 2001;50:358–65

    Article  PubMed  Google Scholar 

  7. Ishii K, Yamaji S, Kitagaki H, Imamura T, Hirono N, Mori E. Regional cerebral blood flow difference between dementia with Lewy bodies and AD. Neurology 1999;53:413–6

    PubMed  Google Scholar 

  8. Lobotesis K, Fenwick JD, Phipps A, Ryman A, Swann A, Ballard C, et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 2001;56:643–9

    PubMed  Google Scholar 

  9. Pasquier J, Michel B, Brenot-Rossi I, Hassan-Sebbag N, Sauvan R, Gastaut JL. Value of 99mTc-ECD SPET for diagnosis of dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2002;29:1342–8

    Article  PubMed  Google Scholar 

  10. Donnemiller E, Heilmann J, Wenning G, Berger W, Decristoforo C, Moncayo R, et al. Brain perfusion scintigraphy with 99mTc-HMPAO or 99mTc-ECD and 123I-β-CIT single-photon emission tomography in dementia of the Alzheimer-type and diffuse Lewy body disease. Eur J Nucl Med 1997;24:320–5

    PubMed  Google Scholar 

  11. Colloby SJ, Fenwick JD, Williams D, Paling SM, Lobotesis K, Ballard C, et al. A comparison of 99mTc-HMPAO SPET changes in dementia with Lewy bodies and Alzheimer’s disease using statistical parametric mapping. Eur J Nucl Med Mol Imaging 2002;29:615–22

    Article  PubMed  Google Scholar 

  12. Shimizu S, Hanyu H, Kanetaka H, Iwamoto T, Koizumi K, Abe K. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using brain SPECT. Dement Geriatr Cogn Disord 2005;20:25–30

    Article  PubMed  Google Scholar 

  13. Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. 123I-metaiodobenzyl guanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:189–94

    PubMed  Google Scholar 

  14. Taki J, Nakajima K, Hwang E-H, Matsunari I, Komai K, Yoshita M, et al. Peripheral sympathetic dysfunction in patients with Parkinson’s disease without autonomic failure is heart selective and disease specific. Eur J Nucl Med 2000;27:566–73

    Article  PubMed  Google Scholar 

  15. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 1999;53:1020–5

    PubMed  Google Scholar 

  16. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc J-L, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord 2003;18:890–7

    Article  PubMed  Google Scholar 

  17. Yoshita M, Taki J, Yamada M. A clinical role for [123I]MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer’s-type and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2001;71:583–8

    Article  PubMed  Google Scholar 

  18. Watanabe H, Ieda T, Katayama T, Takeda A, Aiba I, Doyu M, et al. Cardiac 123I-meta-iodobenzylguanidine (MIBG) uptake in dementia with Lewy bodies: comparison with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001;70:781–3

    Article  PubMed  Google Scholar 

  19. Oide T, Tokuda T, Momose M, Oguchi K, Nakamura A, Ohara S, et al. Usefulness of [123I]metaiodobenzylguanidine ([123I]MIBG) myocardial scintigraphy in differentiating between Alzheimer’s disease and dementia with Lewy bodies. Intern Med 2003;42:686–90

    PubMed  Google Scholar 

  20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–44

    PubMed  Google Scholar 

  21. Solanski KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21

    PubMed  Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98

    Article  PubMed  Google Scholar 

  23. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48

    PubMed  Google Scholar 

  24. Talairach J, Tournoux P. Co-planar stereotactic atlas of the human brain. New York: Thieme; 1998

    Google Scholar 

  25. Minoshima S, Koeppe RA, Frey KA, Kuhl DE. Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 1994;35:1528–37

    PubMed  Google Scholar 

  26. Mizumura S, Kumita S, Cho K, Ishihara M, Nakajo H, Toba M, et al. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation. Ann Nucl Med 2003;17:289–95

    PubMed  Google Scholar 

  27. Kobayashi H, Momose M, Kanaya S, Kondo C, Kusakabe K, Mitsuhashi N. Scatter correction by two-window method standardizes cardiac I-123 MIBG uptake in various gamma camera systems. Ann Nucl Med 2003;17:309–13

    PubMed  Google Scholar 

  28. Ballard C, Shaw F, McKeith I, Kenny RA. High prevalence of neurovascular instability in neurodegenerative dementias. Neurology 1998;51:1760–2

    PubMed  Google Scholar 

  29. Algotsson A, Viitanen M, Winblad B, Solders G. Autonomic dysfunction in Alzheimer’s disease. Acta Neurol Scand 1995;91:14–8

    PubMed  Google Scholar 

  30. Wang S-J, Liao K-K, Fuh J-L, Lin K-N, Wu Z-A, Liu C-Y, et al. Cardiovascular autonomic functions in Alzheimer’s disease. Age Ageing 1994;23:400–4

    PubMed  Google Scholar 

  31. Szili-Torok T, Kalman J, Paprika D, Dibo G, Rozsa Z, Rudas L. Depressed baroreflex sensitivity in patients with Alzheimer’s and Parkinson’s disease. Neurobiol Aging 2001;22:435–8

    Article  PubMed  Google Scholar 

  32. Ishii T. Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol 1966;6:181–7

    Article  PubMed  Google Scholar 

  33. McDuff T, Sumi SM. Subcortical degeneration in Alzheimer’s disease. Neurology 1985;35:123–6

    PubMed  Google Scholar 

  34. Yates CM, Ritchie IM, Simpson J. Noradrenalin in Alzheimer-type dementia and Down’s syndrome. Lancet 1981;ii:39–40

    Article  Google Scholar 

  35. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005;76:249–51

    Article  PubMed  Google Scholar 

  36. Taki J, Yoshita M, Yamada M, Tonami N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med 2004;18:453–61

    PubMed  Google Scholar 

  37. Minoshima S, Foster NL, Petrie EC, Albin RL, Frey KA, Kuhl DE. Neuroimaging in dementia with Lewy bodies: metabolism, neurochemistry, and morphology. J Geriatr Psychiatry Neurol 2002;15:200–9

    PubMed  Google Scholar 

  38. Hashimoto M, Kitagaki H, Imamura T, Hirono N, Shimomura T, Kazui H, et al. Medial temporal and whole-brain atrophy in dementia with Lewy bodies. A volumetric MRI study. Neurology 1998;51:357–62

    PubMed  Google Scholar 

  39. Barber R, Ballard C, McKeith IG, Gholkar A, O’Brien JT. MRI volumetric study of dementia with Lewy bodies. A comparison with AD and vascular dementia. Neurology 2000;54:1304–9

    PubMed  Google Scholar 

  40. Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002;17:618–30

    Article  PubMed  Google Scholar 

  41. Hanyu H, Shimizu S, Tanaka Y, Kanetaka H, Iwamoto T, Abe K. Differences in magnetization transfer ratios of the hippocampus between dementia with Lewy bodies and Alzheimer’s disease. Neurosci Lett 2005;380:166–9

    Article  PubMed  Google Scholar 

  42. Waker Z, Costa DC, Walker RWH, Shaw K, Gacinovic S, Stevens T, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002;73:134–40

    Article  PubMed  Google Scholar 

  43. O’Brien JT, Colloby S, Fenwick J, Williams D, Firbank M, Burn D, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004;61:919–25

    Article  PubMed  Google Scholar 

  44. Colloby SJ, O’Brien JT, Fenwick JD, Firbank MJ, Burn DJ, McKeith IG, et al. The application of statistical parametric mapping to 123I-FP-CIT SPECT in dementia with Lewy bodies, Alzheimer’s disease and Parkinson’s disease. Neuroimage 2004;23:956–66

    Article  PubMed  Google Scholar 

  45. Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practical parameter: diagnosis of dementia (an evidence-based review), report of the quality standards subcommittee of the American Academy of neurology. Neurology 2001;56:1143–53

    PubMed  Google Scholar 

  46. McKeith IG, Ballard CG, Perry RH, Ince PG, O’Brien JT, Neill D, et al. Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology 2000;54:1050–8

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Umeda and H. Hirose of the Department of Nuclear Medicine of Tokyo Medical University for their support and technical assistance. We are also grateful to Professor J. Patrick Barron of the International Medical Communications Center of Tokyo Medical University for his review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Hanyu.

Additional information

An editorial commentary on this paper is available at http://dx.doi.org/10.1007/s00259-005-1967-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyu, H., Shimizu, S., Hirao, K. et al. Comparative value of brain perfusion SPECT and [123I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 33, 248–253 (2006). https://doi.org/10.1007/s00259-005-1921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1921-x

Keywords

Navigation