Skip to main content
Log in

Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Diagnosis of Parkinson’s disease (PD) can be difficult. F-DOPA PET is able to quantify striatal dopa decarboxylase activity and storage capacity of F-dopamine, but is expensive and not generally available. FP-CIT binds to the dopamine transporter, and FP-CIT SPECT is cheaper and more widely available, but has a lower resolution. The aim of this study was to compare these two methods in the same patients with different stages of PD to assess their power in demonstrating deficits of the striatal dopaminergic system.

Methods

Thirteen patients with de novo PD and 17 patients with advanced PD underwent FP-CIT SPECT and static F-DOPA PET. After data transfer to standard stereotactic space, a template with regions of interest was used to sample values of the caudate, putamen and an occipital reference region. The outcome value was striato-occipital ratios. Patients were clinically examined in the “off state” (UPDRS-III and H&Y stage).

Results

Good correlations were found between striatal F-DOPA uptake and striatal FP-CIT uptake (r=0.78) and between putaminal F-DOPA uptake and putaminal FP-CIT uptake (r=0.84, both p<0.0001). Both striatal uptake of FP-CIT and that of F-DOPA correlated moderately with H&Y stage (ρ=−0.52 for both techniques), UPDRS-III (ρ=−0.38 for F-DOPA; ρ=−0.45 for FP-CIT) and disease duration (ρ=−0.59 for F-DOPA; ρ=−0.49 for FP-CIT, all p<0.05).

Conclusion

FP-CIT values correlate well with F-DOPA values. Both methods correlate moderately with motor scores and are equally able to distinguish patients with advanced PD from patients with de novo PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathological study of 100 cases of Parkinson’s disease. Arch Neurol 1993;50:140–8

    PubMed  Google Scholar 

  2. Hughes AJ, Daniel SE, Ben Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861–70

    Article  PubMed  Google Scholar 

  3. Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 2000;15:692–8

    Article  PubMed  Google Scholar 

  4. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–40

    PubMed  Google Scholar 

  5. Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med 1998;39:1521–30

    PubMed  Google Scholar 

  6. Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, et al. [I-123] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46:231–7

    PubMed  Google Scholar 

  7. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995;38:589–98

    Article  PubMed  Google Scholar 

  8. Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RM, Charney DS, et al. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson’s patients. J Nucl Med 1998;39:1500–8

    PubMed  Google Scholar 

  9. Tissingh G, Booij J, Bergmans P, Winogrodzka A, Janssen AG, van Royen EA, et al. Iodine-123-N-omega-fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med 1998;39:1143–8

    PubMed  Google Scholar 

  10. Tissingh G, Bergmans P, Booij J, Winogrodzka A, van Royen EA, Stoof JC, et al. Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]beta-CIT SPECT. J Neurol 1998;245:14–20

    Article  PubMed  Google Scholar 

  11. Ishikawa T, Dhawan V, Kazumata K, Chaly T, Mandel F, Neumeyer J, et al. Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. J Nucl Med 1996;37:1760–5

    PubMed  Google Scholar 

  12. de Vries EFJ, Luurtsema G, Brussermann M, Elsinga PH, Vaalburg W. Fully automated synthesis module for the high yield one-pot preparation of 6-[F-18]fluoro-L-DOPA. Appl Radiat Isotopes 1999;51:389–94

    Article  Google Scholar 

  13. Dhawan V, Ma Y, Pillai V, Spetsieris P, Chaly T, Belakhlef A, et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method versus graphical approach. J Nucl Med 2002;43:1324–30

    PubMed  Google Scholar 

  14. Ashburner J, Friston K. Multimodal image coregistration and partitioning—a unified framework. NeuroImage 1997;6:209–17

    Article  PubMed  Google Scholar 

  15. Antonini A, Vontobel P, Psylla M, Gunther I, Maguire PR, Missimer J, et al. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 1995;52:1183–90

    PubMed  Google Scholar 

  16. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, et al. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 1990;47:1290–8

    PubMed  Google Scholar 

  17. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 1986;49:853–60

    PubMed  Google Scholar 

  18. Goodman MM, Keil R, Shoup TM, Eshima D, Eshima L, Kilts C, et al. Fluorine-18-FPCT: a PET radiotracer for imaging dopamine transporters. J Nucl Med 1997;38:119–26

    PubMed  Google Scholar 

  19. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47:493–503

    Article  PubMed  Google Scholar 

  20. Zigmond MJ, Abercrombie ED, Berger TW, Grace AA, Stricker EM. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 1990;13:290–6

    Article  PubMed  Google Scholar 

  21. Ito Y, Fujita M, Shimada S, Watanabe Y, Okada T, Kusuoka H, et al. Comparison between the decrease of dopamine transporter and that of L-DOPA uptake for detection of early to advanced stage of Parkinson’s disease in animal models. Synapse 1999;31:178–85

    Article  PubMed  Google Scholar 

  22. Asenbaum S, Brucke T, Pirker W, Podreka I, Angelberger P, Wenger S, et al. Imaging of dopamine transporters with iodine-123-beta-CIT and SPECT in Parkinson’s disease. J Nucl Med 1997;38:1–6

    PubMed  Google Scholar 

  23. Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord 2003;18:S43–S51

    Article  Google Scholar 

  24. Ribeiro MJ, Vidailhet M, Loc’h C, Dupel C, Nguyen JP, Ponchant M, et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch Neurol 2002;59:580–6

    Article  PubMed  Google Scholar 

  25. Winogrodzka A, Bergmans P, Booij J, van Royen EA, Stoof JC, Wolters EC. [123I]beta-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003;74:294–8

    Article  PubMed  Google Scholar 

  26. Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med 2000;27:867–9

    Article  PubMed  Google Scholar 

  27. Tissingh G, Bergmans P, Booij J, Winogrodzka A, Stoof JC, Wolters EC, et al. [123I]beta-CIT single-photon emission tomography in Parkinson’s disease reveals a smaller decline in dopamine transporters with age than in controls. Eur J Nucl Med 1997;24:1171–4

    PubMed  Google Scholar 

  28. van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 2002;10:36–43

    Article  PubMed  Google Scholar 

  29. Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ, et al. Dopamine transporters decrease with age. J Nucl Med 1996;37:554–9

    PubMed  Google Scholar 

  30. Pirker W, Holler I, Gerschlager W, Asenbaum S, Zettinig G, Brucke T. Measuring the rate of progression of Parkinson’s disease over a 5-year period with beta-CIT SPECT. Mov Disord 2003;18:1266–72

    Article  PubMed  Google Scholar 

  31. Vingerhoets FJG, Snow BJ, Schulzer M, Morrison S, Ruth TJ, Holden JE, et al. Reproducibility of fluorine-18-6-fluorodopa positron emission tomography in normal human subjects. J Nucl Med 1994;35:18–24

    PubMed  Google Scholar 

  32. Eidelberg D, Takikawa S, Dhawan V, Chaly T, Robeson W, Dahl R, et al. Striatal F-18 dopa uptake—absence of an aging effect. J Cereb Blood Flow Metab 1993;13:881–8

    PubMed  Google Scholar 

  33. Sawle GV, Colebatch JG, Shah A, Brooks DJ, Marsden CD, Frackowiak RS. Striatal function in normal aging—implications for Parkinson’s disease. Ann Neurol 1990;28:799–804

    Article  PubMed  Google Scholar 

  34. Kish SJ, Zhong XH, Hornykiewicz O, Haycock JW. Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies? Ann Neurol 1995;38:260–4

    Article  PubMed  Google Scholar 

  35. Pohjalainen T, Rinne JO, Nagren K, Syvalahti E, Hietala J. Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo. Am J Psychiatry 1998;155:768–73

    PubMed  Google Scholar 

  36. Rivest R, Falardeau P, Di Paolo T. Brain dopamine transporter: gender differences and effect of chronic haloperidol. Brain Res 1995;692:269–72

    Article  PubMed  Google Scholar 

  37. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998;64:314–9

    PubMed  Google Scholar 

  38. Marek K, Innis R, van Dyck C, Fussell B, Early M, Eberly S, et al. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 2001;57:2089–94

    PubMed  Google Scholar 

  39. Tatsch K, Schwarz J, Mozley PD, Linke R, Pogarell O, Oertel WH, et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415–21

    PubMed  Google Scholar 

  40. Brucke T, Djamshidian S, Bencsits G, Pirker W, Asenbaum S, Podreka I. SPECT and PET imaging of the dopaminergic system in Parkinson’s disease. J Neurol 2000;247 Suppl 4:IV/2–7

    Google Scholar 

  41. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–510

    Article  PubMed  Google Scholar 

  42. Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank GE Health for financial support and John P Seibyl, MD (Molecular Neuro Imaging, New Haven, CT, USA) for valuable advice.

The experiments comply with the current laws of the Netherlands, including approval of the local medical ethics committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Jager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshuis, S.A., Maguire, R.P., Leenders, K.L. et al. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging 33, 200–209 (2006). https://doi.org/10.1007/s00259-005-1904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1904-y

Keywords

Navigation