Skip to main content

Advertisement

Log in

99mTc-rituximab radiolabelled by photo-activation: a new non-Hodgkin’s lymphoma imaging agent

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Rituximab was the first chimeric monoclonal antibody to be approved for treatment of indolent B-cell non-Hodgkin’s lymphoma (NHL). It is directed against the CD20 antigen, which is expressed by 95% of B-cell NHLs. The aim of this study was to explore the possibility of radiolabelling rituximab with 99mTc for use as an imaging agent in NHL for early detection, staging, remission assessment, monitoring for metastatic spread and tumour recurrence, and assessment of CD20 expression prior to (radio)immunotherapy.

Methods

Rituximab was purified from Mabthera solution (Roche), photo-activated at 302 nm by UV irradiation and radiolabelled with 99mTc. The effectiveness of the labelling method was evaluated by determination of the number of free thiol groups per photoreduced antibody, radiochemical purity and in vitro stability of 99mTc-rituximab.

Results

On average, 4.4 free thiol groups per photoreduced antibody were determined. Radiolabelling yields greater than 95% were routinely observed after storage of the photo-activated antibody at −80°C for 195 days. The direct binding assay showed preserved ability of 99mTc-rituximab to bind to CD20, with an average immunoreactive fraction of 93.3%. The internalisation rate was proven to be low, with only 5.3% of bound 99mTc-rituximab being internalised over 4 h at 37°C.

Conclusion

Our results demonstrate that 99mTc-rituximab of high radiochemical purity and with preserved binding affinity for the antigen can be prepared by photoreduction and that the method shows good reproducibility. 99mTc-rituximab will be further explored as an imaging agent applicable in NHL for the purposes mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Golay J, Gramigna R, Facchinetti V, Capello D, Gaidano G, Introna M. Acquired immunodeficiency syndrome-associated lymphomas are efficiently lysed through complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by rituximab. Br J Haematol 2002;119:923–9

    Article  PubMed  Google Scholar 

  2. Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005;8:140–74

    PubMed  Google Scholar 

  3. Coffey J, Hodgson DC, Gospodarowicz MK. Therapy of non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S28–36

    PubMed  Google Scholar 

  4. Gopal AK, Press OW. Clinical applications of anti-CD20 antibodies. J Lab Clin Med 1999;134:445–50

    Article  PubMed  Google Scholar 

  5. Tallman MS. Monoclonal antibody therapies in leukemias. Semin Hematol 2002;39 4:12–9

    Article  PubMed  Google Scholar 

  6. Withoff S, Bijman MNA, Stel AJ, Delahaye L, Calogero A, de Jonge MWA, et al. Characterization of BIS20x3, a bi-specific antibody activating and retargeting T-cells to CD20-positive B-cells. Br J Cancer 2001;84:1115–21

    Article  PubMed  Google Scholar 

  7. Avivi I, Robinson S, Goldstone A. Clinical use of rituximab in haematological malignacies. Minireview. Br J Cancer 2003;89:1389–94

    Article  PubMed  Google Scholar 

  8. Johnson PWM, Glennie MJ. Rituximab: mechanisms and application. Br J Cancer 2001;85 11:1619–23

    Article  PubMed  Google Scholar 

  9. http://www.emea.eu.int/humandocs/Humans/EPAR/Mabthera/Mabthera.htm. Accessed January 15, 2004

  10. Emmanouilides C. Current status of radioimmunotherapy for non-Hodgkin lymphoma. Haema 2003;6:314–27

    Google Scholar 

  11. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, et al. Radioimmunotherapy of B-cell lymphoma with (131I)anti-B1 (anti-CD20) antibody. N Engl J Med 1993;329:459–65

    Article  PubMed  Google Scholar 

  12. http://www.rxlist.com/cgi/rxlist.cgi?drug=rituximab. Accessed December 15, 2004

  13. Swerdlow AJ. Epidemiology of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S2–12

    Google Scholar 

  14. Hoskin PJ, O’Doherty MJ. Lymphoma: diagnosis and management introduction. Eur J Nucl Med Mol Imaging 2003; 30 Suppl 1:S1

    Article  Google Scholar 

  15. Even-Sapir E, Israel O. Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S65–81

    PubMed  Google Scholar 

  16. Hoskin PJ. PET in lymphoma: what are the oncologist’s needs? Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S37–41

    Article  PubMed  Google Scholar 

  17. Rankin SC. Assessment of response to therapy using conventional imaging. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S56–64

    PubMed  Google Scholar 

  18. Sciepers C, Filmont JE, Czernin J. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S82–8

    PubMed  Google Scholar 

  19. Vinnicombe SJ, Reznek RH. Computerised tomography in the staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S42–55

    PubMed  Google Scholar 

  20. Reske SN. PET and restaging of malignant lymphoma including residual masses and relapse. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S82–96

    PubMed  Google Scholar 

  21. Spaepen K, Stroobants S, Verhoef G, Mortelamns L. Positron emission tomography with [18F]FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging 2003;30 Suppl 1:S97–105

    PubMed  Google Scholar 

  22. Reilly RM. Immunoscintigraphy of tumours using 99mTc-labelled monoclonal antibodies: a review. Nucl Med Commun 1993;14:347–59

    PubMed  Google Scholar 

  23. Mather SJ. Radiolabelled antibodies and peptides. In: Sampson CB, editor. Textbook of radiopharmacy theory and practice. 3rd ed. Amsterdam, The Netherlands: Gordon and Breach Science Publishers; 1990. p. 63–82

    Google Scholar 

  24. Urbain JLC, Vekemans MCM, Lemieux SK, Cosenza SC, Senadhi VK, Milestone BN, et al. Nuclear oncology and the imagine concept. Acta Radiol 1997;38 Suppl 41:21–8

    Google Scholar 

  25. Stalteri MA, Mather SJ. Technetium-99m labelling of the anti-tumour antibody PR1A3 by photoactivation. Eur J Nucl Med 1996;23:178–87

    Article  PubMed  Google Scholar 

  26. Muddukrishna SN, Chen A, Qi P, Smolenski MA. Quantitation of reduced disulfide groups in monoclonal antibodies using 5-iodoacetamidofluorescein: a novel size exclusion-HPLC technique. Appl Radiat Isotopes 1995;46:1015–26

    Article  Google Scholar 

  27. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 1984;72:77–89

    Article  PubMed  Google Scholar 

  28. Badger CC, Krohn KA, Bernstein ID. In vitro measurement of avidity of radioiodinated antibodies. Nucl Med Biol 1987;14:605–10

    Google Scholar 

  29. Divgi CR. Status of radiolabeled monoclonal antibodies for diagnosis and therapy of cancer. Oncology 1996;10:939–58

    PubMed  Google Scholar 

  30. Juweid ME. Radiotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med 2002;43:1507–29

    PubMed  Google Scholar 

  31. Michel RB, Mattes MJ. Intracellular accumulation of the anti-CD20 antibody 1F5 in B-lymphoma cells. Clin Cancer Res 2002;8:2701–13

    PubMed  Google Scholar 

  32. Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 1989;49:4906–12

    PubMed  Google Scholar 

  33. Jilani I, O’Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, et al. Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood 2003;102:3514–20

    Article  PubMed  Google Scholar 

  34. Schaffland AO, Buchegger F, Kosinski M, Antonescu C, Paschoud C, Grannavel C, et al. 131I-rituximab: relationship between immunoreactivity and specific activity. J Nucl Med 2004;45:1784–90

    PubMed  Google Scholar 

  35. Scheidhauer K, Wolf I, Baumgartl HJ, Von Schilling C, Schmidt B, Reidel G, et al. Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 2002;29:1276–82

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gmeiner Stopar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gmeiner Stopar, T., Mlinaric-Rascan, I., Fettich, J. et al. 99mTc-rituximab radiolabelled by photo-activation: a new non-Hodgkin’s lymphoma imaging agent. Eur J Nucl Med Mol Imaging 33, 53–59 (2006). https://doi.org/10.1007/s00259-005-1838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1838-4

Keywords

Navigation