Skip to main content

Advertisement

Log in

Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and 99mTc-depreotide single-photon emission computed tomography (SPECT) in the diagnosis of malignancy of solitary pulmonary nodules (SPNs).

Methods

Twenty-eight patients without any history of cancer and presenting an SPN (0.8–3 cm in size) underwent FDG PET and depreotide SPECT. Depreotide SPECT and FDG PET were performed on a double-head gamma camera and a dedicated PET scanner respectively. Twenty-five out of 28 lesions were removed by thoracotomy or assessed by biopsy (n=1) and histologically examined. A strategy of serial CT scanning was adopted in the three remaining patients.

Results

Histological findings revealed 18 malignant nodules and seven benign lesions. Stability over a 2-year period indicated a benign process in the remaining three cases. Both techniques yielded true positive results in 15 of the 18 cancers. FDG PET identified two additional adenocarcinomas not detected by depreotide SPECT. A carcinoid tumour not visualised on FDG PET was identified by depreotide SPECT. Seven of the ten benign lesions did not reveal tracer uptake on either depreotide SPECT or FDG PET. Both techniques showed false positive results for the same two lesions. One more false positive was seen on FDG PET. FDG PET and depreotide SPECT had a sensitivity of 94.4% and 88.9% respectively; this difference was not significant. In our experience, depreotide SPECT and FDG PET are equally sensitive (92.3%) for large (>1.5 cm) and equally specific (85.7%) for small (up to 1.5 cm) SPNs suspicious for malignancy.

Conclusion

This study showed 18F-FDG PET to be more sensitive than 99mTc-depreotide SPECT in the diagnosis of malignancy of SPNs. However, the combination of both techniques may provide additional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD. The solitary pulmonary nodule. Chest 2003;123(1 Suppl):89S–96S.

    PubMed  Google Scholar 

  2. Ost D, Fein AM, Feinsilver SH. Clinical practice. The solitary pulmonary nodule. N Engl J Med 2003;348 25:2535–42.

    PubMed  Google Scholar 

  3. Kubota K, Matsuzawa T, Fujiwara T, Ito M, Hatazawa J, Ishiwata K, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med 1990;31(12):1927–32.

    CAS  PubMed  Google Scholar 

  4. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001;285(7):914–24.

    CAS  PubMed  Google Scholar 

  5. Blum J, Handmaker H, Lister-James J, Rinne N. A multicenter trial with a somatostatin analog 99mTc depreotide in the evaluation of solitary pulmonary nodules. Chest 2000;117(5):1232–8.

    CAS  PubMed  Google Scholar 

  6. Blum J, Handmaker H, Rinne NA. Technetium labeled small peptide radiopharmaceuticals in the identification of lung cancer. Curr Pharm Des 2002;8(20):1827–36.

    CAS  PubMed  Google Scholar 

  7. Blum JE, Handmaker H, Rinne NA. The utility of a somatostatin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 1999;115(1):224–32.

    CAS  PubMed  Google Scholar 

  8. Hartman TE. Radiologic evaluation of the solitary pulmonary nodule. Semin Thorac Cardiovasc Surg 2002;14(3):261–7

    PubMed  Google Scholar 

  9. Alavi A, Gupta N, Alberini JL, Hickeson M, Adam LE, Bhargava P, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 2002;32(4):293–321.

    PubMed  Google Scholar 

  10. Shih WJ, Hirschowitz E, Bensadoun E, Woodring J, Ryo YU, Kraman S. Biodistribution on Tc-99m labeled somatostatin receptor-binding peptide (Depreotide, NeoTec) planar and SPECT studies. Ann Nucl Med 2002;16(3):213–9.

    CAS  PubMed  Google Scholar 

  11. Lowe VJ, Hoffman JM, DeLong DM, Patz EF, Coleman RE. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 1994;35(11):1771–6.

    CAS  PubMed  Google Scholar 

  12. Kahn D, Menda Y, Kernstine K, Bushnell D, McLaughlin K, Miller S, et al. The utility of 99mTc depreotide compared with F-18 fluorodeoxyglucose positron emission tomography and surgical staging in patients with suspected non-small cell lung cancer. Chest 2004;125(2):494–501.

    CAS  PubMed  Google Scholar 

  13. Bourguet P. 2002 Standards, options and recommendations for the use of [18F]-FDG (PET-FDG) in cancerology. Bull Cancer 2003;90 Spec No:S1–109.

    PubMed  Google Scholar 

  14. Bourguet P. Standards, options and recommendations for the use of PET-FDG in cancerology. Results in bronchopulmonary and pleural cancers. Bull Cancer 2003;90 Spec No:S23–41.

    PubMed  Google Scholar 

  15. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, et al. Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 2002;29(12):1639–47.

    PubMed  Google Scholar 

  16. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40(4):556–65.

    CAS  PubMed  Google Scholar 

  17. Erasmus JJ, McAdams HP, Patz EF, Jr, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. Am J Roentgenol 1998;170(5):1369–73.

    CAS  Google Scholar 

  18. Kim BT, Kim Y, Lee KS, Yoon SB, Cheon EM, Kwon OJ, et al. Localized form of bronchioloalveolar carcinoma: FDG PET findings. Am J Roentgenol 1998;170(4):935–9.

    CAS  Google Scholar 

  19. Higashi K, Ueda Y, Seki H, Yuasa K, Oguchi M, Noguchi T, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 1998;39(6):1016–20.

    CAS  PubMed  Google Scholar 

  20. Yap CS, Schiepers C, Fishbein MC, Phelps ME, Czernin J. FDG-PET imaging in lung cancer: how sensitive is it for bronchioloalveolar carcinoma? Eur J Nucl Med Mol Imaging 2002;29(9):1166–73.

    CAS  PubMed  Google Scholar 

  21. Virgolini I, Leimer M, Handmaker H, Lastoria S, Bischof C, Muto P, et al. Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res 1998;58(9):1850–9.

    CAS  PubMed  Google Scholar 

  22. Vallabhajosula S, Moyer BR, Lister-James J, McBride BJ, Lipszyc H, Lee H, et al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides. J Nucl Med 1996;37(6):1016–22.

    CAS  PubMed  Google Scholar 

  23. Pearson DA, Lister-James J, McBride WJ, Wilson DM, Martel LJ, Civitello ER, et al. Somatostatin receptor-binding peptides labeled with technetium-99m: chemistry and initial biological studies. J Med Chem 1996;39(7):1361–71.

    CAS  PubMed  Google Scholar 

  24. Machac J, Krynyckyi B, Kim C. Peptide and antibody imaging in lung cancer. Semin Nucl Med 2002;32 4:276–92.

    PubMed  Google Scholar 

  25. O’Byrne KJ, Carney DN. Somatostatin and the lung. Lung Cancer 1993;10(3–4):151–72.

    CAS  PubMed  Google Scholar 

  26. Virgolini I, Pangerl T, Bischof C, Smith-Jones P, Peck-Radosavljevic M. Somatostatin receptor subtype expression in human tissues: a prediction for diagnosis and treatment of cancer? Eur J Clin Invest 1997;27(8):645–7.

    CAS  PubMed  Google Scholar 

  27. Fujita T, Yamaji Y, Sato M, Murao K, Takahara J. Gene expression of somatostatin receptor subtypes, SSTR1 and SSTR2, in human lung cancer cell lines. Life Sci 1994;55(23):1797–806.

    CAS  PubMed  Google Scholar 

  28. Agostini D, Maublant J, Naalsund A. Molecular imaging with 99mTc-depreotide SPECT for the diagnosis of malignancy of solitary pulmonary nodules (SPN): results from a multicentre study. Eur J Nucl Med Mol Imaging 2004;31(S2):S353.

    Google Scholar 

  29. Halley A, Huchet V, Zalcman G, et al. Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of the solitary pulmonary nodule (SPN). J Nucl Med 2004;45 5:377P.

    Google Scholar 

  30. Boucher L, Rodrigue S, Lecomte R, Benard F. Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 2004;45(2):214–9.

    PubMed  Google Scholar 

  31. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43 7:876–81.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Alban Bailliez, MD and Sylvie Petit, MD for assisting with this project, and clinicians from both centres for referring patients. We are also grateful to Armelle Regeasse, MSc, for precious help in the statistical analysis of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Halley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halley, A., Hugentobler, A., Icard, P. et al. Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 32, 1026–1032 (2005). https://doi.org/10.1007/s00259-005-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1812-1

Keywords

Navigation