Skip to main content

Advertisement

Log in

[131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [131I]-2′-fluoro-2′-deoxy-1-β-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular 131I (even at tracer levels), the nucleus absorbed dose (D n ) and dose-dependent immune functionality were evaluated for NIT+ T cells labeled ex vivo in [131I]FIAU-containing medium.

Methods

Based on in vitro kinetic studies of [131I]FIAU uptake by NIT+ T cells, D n was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [131I]FIAU-labeled cells was assayed against 51Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay.

Results and conclusion

At median nuclear absorbed doses up to 830 cGy, a 51Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 1997;15:433–444

    PubMed  Google Scholar 

  2. Heslop HE, Brenner MK, Rooney CM. Donor T cells to treat EBV-associated lymphoma. N Engl J Med 1994;331:679–680

    Article  CAS  Google Scholar 

  3. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990;76:2462–2465

    PubMed  CAS  Google Scholar 

  4. Papadopoulos EB, Ladanyi M, Emanuel D, Mackinnon S, Boulad F, Carabasi MH, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med 1994;330:1185–1191

    Article  PubMed  CAS  Google Scholar 

  5. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992;257:238–241

    Article  PubMed  CAS  Google Scholar 

  6. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 1995;345:9–13

    Article  PubMed  CAS  Google Scholar 

  7. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995;86:2041–2050

    PubMed  CAS  Google Scholar 

  8. Drobyski WR, Keever CA, Roth MS, Koethe S, Hanson G, McFadden P, et al. Salvage immunotherapy using donor leukocyte infusions as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood 1993;82:2310–2318

    PubMed  CAS  Google Scholar 

  9. Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995;86:1261–1268

    PubMed  CAS  Google Scholar 

  10. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003;21:405–413

    Article  PubMed  CAS  Google Scholar 

  11. Koehne G, Gallardo HF, Sadelain M, O’Reilly RJ. Rapid selection of antigen-specific T lymphocytes by retroviral transduction. Blood 2000;96:109–117

    PubMed  CAS  Google Scholar 

  12. Gallardo HF, Tan C, Sadelain M. The internal ribosomal entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in human primary T lymphocytes. Gene Ther 1997;4:1115–1119

    Article  PubMed  CAS  Google Scholar 

  13. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–6132

    PubMed  CAS  Google Scholar 

  14. Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999;1:315–320

    Article  PubMed  CAS  Google Scholar 

  15. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–4095

    PubMed  CAS  Google Scholar 

  16. Koehne G, Smith KM, Ferguson TL, Williams RY, Heller G, Pamer EG, et al. Quantitation, selection, and functional characterization of Epstein-Barr virus-specific and alloreactive T cells detected by intracellular interferon-gamma production and growth of cytotoxic precursors. Blood 2002;99:1730–1740

    Article  PubMed  CAS  Google Scholar 

  17. Goddu SM, Howell RW, Bouchet LG, Bolch WE, Rao DV. MIRD cellular S factors: self-absorbed dose per unit cumulated activity for selected radionuclides and monoenergetic electron and alpha particle emitters incorporated into different cell compartments. Reston, VA: Society of Nuclear Medicine; 1997

    Google Scholar 

  18. Weber D, Eckerman K, Dillman L, Ryman J. MIRD: radionuclide data and decay schemes. New York: Society of Nuclear Medicine; 1989

    Google Scholar 

  19. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072–1083

    PubMed  Google Scholar 

  20. Thakur ML, McKenney SM. Indium 111-mercaptopyridine N-oxide-labeled human leukocytes and platelets: mechanism of labeling and intracellular location of 111In and mercaptopyridine N-oxide. J Lab Clin Med 1986;107:141–147

    PubMed  CAS  Google Scholar 

  21. Coleman R, Datz F. Detection of inflammatory disease using radiolabeled cells. In: Sandler M, Patton J, Coleman R, et al., editors. Diagnostic nuclear medicine. Baltimore, MD: Williams & Wilkins; 1996; pp. 1509–1524

    Google Scholar 

  22. Harwood SJ, Camblin JG, Hakki S, Morrissey MA, Laven DL, Zangara LM, et al. Use of technetium antigranulocyte monoclonal antibody Fab’ fragments for the detection of osteomyelitis. Cell Biophys 1994;25:99–107

    Google Scholar 

  23. Kipper SL. The role of radiolabeled leukocyte imaging in the management of patients with acute appendicitis. Q J Nucl Med 1999;43:83–92

    PubMed  CAS  Google Scholar 

  24. Koblik PD, De Nardo GL, Berger HJ. Current status of immunoscintigraphy in the detection of thrombosis and thromboembolism. Semin Nucl Med 1989;19:221–237

    Article  PubMed  CAS  Google Scholar 

  25. McAfee JG, Subramanian G, Gagne G. Technique of leukocyte harvesting and labeling: problems and perspectives. Semin Nucl Med 1984;14:83–106

    Article  PubMed  CAS  Google Scholar 

  26. Welling M, Feitsma HI, Calame W, Pauwels EK. Detection of experimental infections with 99mTc-labeled monoclonal antibodies against TNF-alpha and interleukin-8. Nucl Med Biol 1997;24:649–655

    Article  PubMed  CAS  Google Scholar 

  27. Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L, et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med 1997;24:497–504

    PubMed  CAS  Google Scholar 

  28. Melder RJ, Elmaleh D, Brownell AL, Brownell GL, Jain RK. A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods 1994;175:79–87

    Article  PubMed  CAS  Google Scholar 

  29. Shibata C, Shiwaku Y, Ohizumi Y, Maezawa H, Okumura Y, Suzuki Y, et al. [In vivo distributions of 111In and/or 3H labeled lymphocyte in C3H/He mouse (author’s transl)]. Radioisotopes 1979;28:431–436

    PubMed  CAS  Google Scholar 

  30. Sims TJ, Page RC. An improved method for assessing the incorporation of labeled precursors into DNA by human mononuclear cells. J Immunol Methods 1984;67:255–269

    Article  PubMed  CAS  Google Scholar 

  31. Nishimura Y, Nakamura H. Radioactive iodination of lymphocyte surface proteins and characterization of their molecular properties. J Biochem (Tokyo) 1982;91:1679–1686

    CAS  Google Scholar 

  32. Slezak SE, Muirhead KA. Radioactive cell membrane labelling. Nature 1991;352:261–262

    Article  PubMed  CAS  Google Scholar 

  33. Spiva DA, Sears DA. Surface labeling of normal human peripheral blood lymphocytes with a nonpenetrating radioactive probe. J Reticuloendothel Soc 1981;30:129–145

    PubMed  CAS  Google Scholar 

  34. McAfee JG, Thakur ML. Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. II. Particles. J Nucl Med 1976;17:488–492

    PubMed  CAS  Google Scholar 

  35. Puncher MR, Blower PJ. Labelling of leucocytes with colloidal technetium-99m-SnF2: an investigation of the labelling process by autoradiography. Eur J Nucl Med 1995;22:101–107

    Article  PubMed  CAS  Google Scholar 

  36. Korf J, Veenma-van der Duin L, Brinkman-Medema R, Niemarkt A, de Leij LF. Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT. J Nucl Med 1998;39:836–841

    PubMed  CAS  Google Scholar 

  37. Mukherji B, Arnbjarnarson O, Spitznagle LA, Kalish RI, Hoffman J, Ergin MT, et al. Imaging pattern of previously in vitro sensitized and interleukin-2 expanded autologous lymphocytes in human cancer. Int J Rad Appl Instrum B 1988;15:419–427

    PubMed  CAS  Google Scholar 

  38. Spencer RP, Mukherji B. Utilization of tumour-sensitized (‘educated’) and radiolabelled lymphocytes for tumour localization. Nucl Med Commun 1988;9:783–786

    Article  PubMed  CAS  Google Scholar 

  39. Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18:357–366

    Article  PubMed  CAS  Google Scholar 

  40. Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37:1557–1562

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants P01 CA59350, P50 CA86438, HL53752, CA76117, R24 CA83084, Department of Energy grants FG02-02ER63481, FG03-86ER60407, and 95ER62039, a Translational Research Award of the Leukemia and Lymphoma Society, the Aubrey Fund for Pediatric Cancer Research, the Larry H. Smead Fund, and the Vincent Astor Chair Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Zanzonico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanzonico, P., Koehne, G., Gallardo, H.F. et al. [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging 33, 988–997 (2006). https://doi.org/10.1007/s00259-005-0057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0057-3

Keywords

Navigation