Skip to main content

Advertisement

Log in

Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract.

Purpose

The aim of this study was to compare the diagnostic performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and voxel-based morphometry (VBM) on magnetic resonance imaging (MRI) in the same group of patients with very mild Alzheimer’s disease (AD).

Methods

Thirty patients with very mild AD (age 67.0±5.8 years; MMSE score 25.5±1.2, range 24–28), 32 patients with mild AD (age 67.0±4.5 years, MMSE score 22.1±0.8, range 21–23) and 60 age- and sex-matched normal volunteers underwent both FDG-PET and three-dimensional spoiled gradient echo MRI. Statistical parametric mapping was used to conduct voxel by voxel analysis and Z score mapping. First, the region of interest (ROI) maps of significant reductions in glucose metabolism and grey matter density in the mild AD patients were defined. Secondly, analysis of receiver operating characteristic (ROC) curves for Z scores in the ROI maps discriminating very mild AD patients and normal controls was performed.

Results

In mild AD patients, FDG-PET indicated significant reductions in glucose metabolism in the bilateral posterior cingulate gyri and the right parietotemporal area, while VBM analysis showed a significant decrease in grey matter volume density in the bilateral amygdala/hippocampus complex, compared with the normal control group. ROC analysis showed that in very mild AD patients the accuracy of FDG-PET diagnosis was 89% and that of VBM-MRI diagnosis was 83%. The accuracy of the combination of FDG-PET and VBM-MRI diagnosis was 94%.

Conclusion

In very mild AD, both FDG-PET and VBM-MRI had high accuracy for diagnosis, but FDG-PET showed slightly higher accuracy than VBM-MRI. Combination of the two techniques will yield a higher diagnostic accuracy in very mild AD by making full use of functional and morphological images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grundman M, Sencakova D, Jack CR Jr, Petersen RC, Kim HT, Schultz A, et al. Alzheimer’s Disease Cooperative Study. Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci 2002;19:23–27

    Article  PubMed  CAS  Google Scholar 

  2. Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004;23:708–716

    Article  PubMed  CAS  Google Scholar 

  3. de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, et al. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J Intern Med 2004;256:205–223

    Article  PubMed  Google Scholar 

  4. de Toledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004;25:1197–1203

    Article  Google Scholar 

  5. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94

    Article  PubMed  CAS  Google Scholar 

  6. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005;32:486–510

    Article  PubMed  CAS  Google Scholar 

  7. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004;63:2332–2340

    PubMed  CAS  Google Scholar 

  8. Herholz K. PET studies in dementia.Ann Nucl Med 2003;17:79–89

    PubMed  Google Scholar 

  9. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–821

    Article  PubMed  CAS  Google Scholar 

  10. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001;14:298–309

    Article  PubMed  CAS  Google Scholar 

  11. Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002;17:618–630

    Article  PubMed  CAS  Google Scholar 

  12. Ishii K, Kawachi T, Sasaki H, Kono AK, Fukuda T, Kojima Y, et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of Z score images. AJNR Am J Neuroradiol 2005;25:333–340

    Google Scholar 

  13. Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 2005;32:959–963

    Article  PubMed  Google Scholar 

  14. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–944

    PubMed  CAS  Google Scholar 

  15. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 1975;12:189–198

    Article  PubMed  CAS  Google Scholar 

  16. Honma A, Fukuzawa K, Tsukada Y, Ishii T, Hasegawa K, Mohs RC. Development of a Japanese version of Alzheimer’s Disease Assessment Scale (ADAS). Jpn J Geriatr Psychiatry 1992;647–655

  17. Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997;38:925–928

    PubMed  CAS  Google Scholar 

  18. Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Human Brain Mapping 1995;3:165–189

    Article  Google Scholar 

  19. Ashburner J, Neelin P, Collins DL, Evans AC, Friston KJ. Incorporating prior knowledge into image registration. Neuroimage 1997;6:344–352

    Article  PubMed  CAS  Google Scholar 

  20. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Human Brain Mapping 1999;7:254–266

    Article  PubMed  CAS  Google Scholar 

  21. Ishii K, Sasaki M, Matsui M, Sakamoto S, Yamaji S, Hayashi N, et al. A diagnostic method for suspected Alzheimer’s disease using H2 15O positron emission tomography perfusion Z score. Neuroradiology 2000;42:787–794

    Article  PubMed  CAS  Google Scholar 

  22. Bookstein FL. “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage 2001;14:1454–1462

    Article  PubMed  CAS  Google Scholar 

  23. Ashburner J, Friston KJ. Why voxel-based morphometry should be used. Neuroimage 2001;14:1238–1243

    Article  PubMed  CAS  Google Scholar 

  24. Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic resonance scans for hippocampal atrophy in Alzheimer’s disease. Neurology 1991;41:51–54

    PubMed  CAS  Google Scholar 

  25. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967–972

    Article  PubMed  CAS  Google Scholar 

  26. Jack CR, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42:183–188

    PubMed  Google Scholar 

  27. Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, et al. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 1992;42:1743–1750

    PubMed  CAS  Google Scholar 

  28. de Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, et al. The radiologic prediction of Alzheimer’s disease: the atrophic hippocampal formation. AJNR 1993;14:897–906

    PubMed  Google Scholar 

  29. Kiliany RJ, Moss MB, Albert MS, Sandor T, Tieman J, Jolesz F. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol 1993;50:949–954

    Google Scholar 

  30. Lehéricy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer’s disease. AJNR 1994;15:927–937

    Google Scholar 

  31. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–19343

    Article  PubMed  Google Scholar 

  32. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–1867

    Article  PubMed  CAS  Google Scholar 

  33. Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology 1996;198:837–843

    PubMed  CAS  Google Scholar 

  34. Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H2 15O positron emission tomography. Eur J Nucl Med 1997;24:670–673

    PubMed  CAS  Google Scholar 

  35. Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002;16:515–525

    Article  PubMed  Google Scholar 

  36. Bartenstein P, Minoshima S, Hirsch C, Buch K, Willoch F, Mosch D, et al. Quantitative assessment of cerebral blood flow in patients with Alzheimer’s disease by SPECT. J Nucl Med 1997;38:1095–1101

    PubMed  CAS  Google Scholar 

  37. Kanetaka H, Matsuda H, Asada T, Ohnishi T, Yamashita F, Imabayashi E, et al. Effects of partial volume correction on discrimination between very early Alzheimer’s dementia and controls using brain perfusion SPECT. Eur J Nucl Med Mol Imaging 2004;31:975–980

    Article  PubMed  Google Scholar 

  38. Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 1998;39:1875–1878

    PubMed  CAS  Google Scholar 

  39. Ishii K, Imamura T, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease. Neurology 1998;51:125–130

    PubMed  CAS  Google Scholar 

  40. Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, et al. Frontal lobe hypometabolism and depression in Alzheimer’s disease. Neurology 1998;50:380–383

    PubMed  CAS  Google Scholar 

  41. Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, et al. Regional hypometabolism related to language disturbance in Alzheimer’s disease. Dement Geriatr Cogn Disord 1998;9:68–73

    Article  PubMed  CAS  Google Scholar 

  42. Hirono N, Mori E, Ishii K, Kitagaki H, Sasaki M, Ikejiri Y, et al. Alteration of regional cerebral glucose utilization with delusions in Alzheimer’s disease. J Neuropsychiat Clin Neurosci 1998;10:433–439

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawachi, T., Ishii, K., Sakamoto, S. et al. Comparison of the diagnostic performance of FDG-PET and VBM-MRI in very mild Alzheimer’s disease. Eur J Nucl Med Mol Imaging 33, 801–809 (2006). https://doi.org/10.1007/s00259-005-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0050-x

Keywords

Navigation