Skip to main content

Advertisement

Log in

Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Previous studies suggest that radiolabelled amino acids could be superior to FDG in differentiating tumour and inflammation. Therefore the aim of this study was to investigate the uptake of FET and MET in human tumour and inflammatory cells and to investigate their uptake kinetics.

Methods

For uptake studies, cells were incubated with 370 kBq FET or 3.7 kBq MET for 15 min. Kinetic studies were performed at variable concentrations of FET and MET. Competitive inhibition studies were done with BCH, MeAIB and L-serine.

Results

All inflammatory cells incorporated more MET than the tumour cells. The uptake of FET, in contrast, was significantly lower in all inflammatory cells than in the tumour cells. In tumour cells the uptake of MET was about five times the uptake of FET. The competitive inhibitors reduced uptake of both tracers to 20–40% in tumour cells and to 70% in inflammatory cells. Kinetic studies showed that MET and FET transport was saturable in all cells except macrophages and followed a Michaelis-Menten kinetic. Highest capacity (V max) and affinity (K m) for the uptake of MET was observed in granulocytes. Capacity and affinity for FET uptake were highest in the DHL-4 cells.

Conclusion

In contrast to MET, FET accumulated to a significantly greater extent in tumour cells than in inflammatory cells. The marked differences between tumour and inflammatory cells concerning FET and MET uptake suggest that FET and MET are substrates of different subtypes of the L system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Larson SM. Cancer or inflammation? A holy grail for nuclear medicine. J Nucl Med 1994;35:1653–1654

    PubMed  CAS  Google Scholar 

  2. Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998;28:352–358

    Article  PubMed  CAS  Google Scholar 

  3. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluordeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–1980

    PubMed  CAS  Google Scholar 

  4. Kubota K, Kubota R, Yamada S, Tada M. Effects of radiotherapy on the cellular uptake of carbon-14-labeledL-methionine in tumor tissue. Nucl Med Biol 1995;22:193–198

    Article  PubMed  CAS  Google Scholar 

  5. Kubota R, Kubota K, Yamada S, Tada M, Iwata R, Tamahashi N. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 1995;36:484–492

    PubMed  CAS  Google Scholar 

  6. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation in fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995;36:1301–1306

    PubMed  CAS  Google Scholar 

  7. Sugawara Y, Gutowski TD, Fisher SJ, Brown R, Wahl RL. Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine andL-methionine,67Ga-citrate and125I-HAS. Eur J Nucl Med 1999;26:333–341

    Article  PubMed  CAS  Google Scholar 

  8. Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H. Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluordeoxyglucose,L-methionine and thymidine. J Nucl Med 1997;38:280–287

    PubMed  CAS  Google Scholar 

  9. Gutowski TD, Fisher SJ, Moon R, Wahl RL. Experimental studies of18F-2-fluoro-2-deoxy-D-glucose (FDG) in infection and in reactive lymph nodes [abstract]. J Nucl Med 1992;33:925

    Google Scholar 

  10. Wahl RL, Fisher SJ. A comparison of FDG,L-methionine and thymidine accumulation into experimental infections and reactive lymph nodes [abstract]. J Nucl Med 1993;34:104

    PubMed  Google Scholar 

  11. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics ofO-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999;40:1367–1373

    PubMed  CAS  Google Scholar 

  12. Laverman P, Boerman OC, Corstens FH, Oyen WJ. Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 2002;29:681–690

    Article  PubMed  CAS  Google Scholar 

  13. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–445

    PubMed  CAS  Google Scholar 

  14. Samnick S, Hellwig D, Gouverneur E, Romeike BF, Schneider G, Menger M, et al Evaluation of radioiodinated phenylalanine-analogues as radiopharmaceuticals to image pancreatic carcinomas in in-vivo models of human pancratic tumors. Eur J Nucl Med Mol Imaging 2003;30 Suppl 2:S175

    Google Scholar 

  15. Langen KJ, Ziemons K, Kiwit CW, Herzog H, Kuwert T, Bock WJ, et al 3-[I-123]iodo-α-methyltyrosine and [methyl-C-11]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997;38:517–522

    PubMed  CAS  Google Scholar 

  16. Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 1991;32:1211–1218

    PubMed  CAS  Google Scholar 

  17. Nettelbladt OS, Sundin AE, Valind SO, Gustafsson GR, Lamberg K, Lagström B, et al Combined fluorine-18-FDG and carbon-11-methionine PET for diagnosis of tumors in lung and mediastinum. J Nucl Med 1998;39:640–647

    PubMed  CAS  Google Scholar 

  18. Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H. Uptake of C-11-methionine in breast cancer studied by PET: an association with the size of S-phase fraction. Br J Cancer 1991;64:1121–2214

    PubMed  CAS  Google Scholar 

  19. Kole AC, Plaat BE, Hoekstra HJ, Vaalburg W, Molenaar WM. FDG andL-[1-11C]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med 1999;40:381–386

    PubMed  CAS  Google Scholar 

  20. Tomiyoshi K, Inoue T, Higuchi T, Ahmed K, Sarwar M, Alyafei S, et al Metabolic studies of [F-18-alpha-methyl]tyrosine in mice bearing colorectal carcinoma LS-180. Anitcancer Drugs 1999;10:329–336

    Article  CAS  Google Scholar 

  21. Langen KJ, Jarosch M, Hamacher K, Muhlensiepen H, Weber F, Floeth F, Pauleit D, Herzog H, Coenen HH. Imaging of gliomas with Cis-4-[18F]fluoro-L-proline. Nucl Med Biol 2004;31:67–75

    Article  PubMed  CAS  Google Scholar 

  22. Langen KJ, Jarosch M, Mühlensiepen H, Hamacher K, Broer S, Jansen P, et al Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003;30:501–508

    Article  PubMed  CAS  Google Scholar 

  23. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al Synthesis and radiopharmacology ofO-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205–212

    PubMed  CAS  Google Scholar 

  24. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et alO-(2-[18F]fluoroethyl)-L-tyrosine andL-[methyl-11C]methionine uptake in brain tumors: initial results of a comparative study. Eur J Nucl Med Mol Imaging 2000;27:542–549

    Article  CAS  Google Scholar 

  25. Rau FC, Weber WA, Wester HJ, Herz M, Becker I, Krüger A, et al O-(2-[18F]Fluoroethyl)-L-tyrosine (FET): a tracer for diferentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 2002;29:1039–1046

    Article  PubMed  CAS  Google Scholar 

  26. Pöpperl G, Götz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value ofO-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004;31:1464–1470

    Article  PubMed  CAS  Google Scholar 

  27. Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K, et alO-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005;32:422–429

    Article  PubMed  CAS  Google Scholar 

  28. Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, et al 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 2002;29:648–654

    Article  PubMed  CAS  Google Scholar 

  29. Pauleit D, Floeth F, Tellmann L, Hamacher K, Hautzel H, Müller HW, et al Comparison ofO-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo alpha-methyl-L-tyrosine SPECT in brain tumors. J Nucl Med 2004;45:374–381

    PubMed  CAS  Google Scholar 

  30. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, et al Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 1993;34:1936–1943

    PubMed  CAS  Google Scholar 

  31. Tahara T, Ichiya Y, Kuwabara Y. High fluorodeoxyglucose uptake in abdominal abscesses: a PET study. J Comput Assist Tomog 1989;13:829–831

    Article  CAS  Google Scholar 

  32. Meyer MA, Frey KA, Schwaiger M. Discordance between F-18 fluordeoxyglucose uptake and contrast enhancement in a brain abscess. Clin Nucl Med 1993;18:682–684

    Article  PubMed  CAS  Google Scholar 

  33. Kubota K, Matsuzawa T, Fumiwata T. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med 1990;31:1927–1933

    PubMed  CAS  Google Scholar 

  34. Lowe VJ, Naunheim KS. Positron emission tomography in lung cancer. Ann Thorac Surg 1998;65:1821–1829

    Article  PubMed  CAS  Google Scholar 

  35. Suguwara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18-fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med 1998;25:1238–1243

    Article  PubMed  Google Scholar 

  36. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998;39:2145–2152

    PubMed  CAS  Google Scholar 

  37. Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al Uptake of 18F-fluorocholine, 18F-fluoroethyl-L-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004;45:1931–1938

    PubMed  CAS  Google Scholar 

  38. Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, et al PET withO-(2-18F-fluoroethyl)-L-tyrosine in peripheral tumors: first clinical results. J Nucl Med 2005;46:411–416

    PubMed  CAS  Google Scholar 

  39. Kubota K, Matsuzawa T, Fujiwara T, Sato T, Tada M, Ido T, Ishiwata K. Differential diagnosis of AH 109 A tumor and inflammation by radioscintigraphy withL-[methyl-11C]methionine. Jpn J Cancer Res 1989;80:778–782

    PubMed  CAS  Google Scholar 

  40. Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Müller HW, Coenen HH, Langen KJ. Whole-body distribution and dosimety ofO-(2-[18F]fluoroethyl)-L-tyrosine. Eur J Nucl Med Mol Imaging 2003;30:519–524

    Article  PubMed  CAS  Google Scholar 

  41. Shotwell MA, Kilberg MS, Oxender DL. The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta 1983;737:267–284

    PubMed  CAS  Google Scholar 

  42. Saier MH, Daniels GA, Boerner P, Lin J. Neutral amino acid transport systems in animal cells: potential targets of oncogene action and regulators of cellular growth. J Membr Biol 1988;104:1–20

    Article  PubMed  CAS  Google Scholar 

  43. Segel GB, Woodlock TJ, Murant FG, Lichtman MA. Photoinhibition of 2-amino-2-carboxybicyclo[2,2,1]heptane transport byO-diazoacetyl-L-serine. An initial step in identifying the L-system amino acid transporter. J Biol Chem 1989;264:16399–402

    PubMed  CAS  Google Scholar 

  44. Barker GA, Wilkins RJ, Golding S, Ellory JC. Neutral amino acid transport in bovine articular chondrocytes. J Physiol 1999;514:795–808

    Article  PubMed  CAS  Google Scholar 

  45. Jara JR, Martinez-Liarte JH, Solano F, Penafiel R. Transport ofL-tyrosine by B16/F10 melanoma cells: the effect of the intracellular content of other amino acids. J Cell Sci 1990;97:479–485

    PubMed  CAS  Google Scholar 

  46. Pankovich JM, Jimbow K. Tyrosine transport in a human melanoma cell line as a basis for selective transport of cytotoxic analogues. Biochem J 1991;280:721–725

    PubMed  CAS  Google Scholar 

  47. Langen KJ, Pauleit D, Coenen HH. 3-[123I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002;29:625–631

    Article  PubMed  CAS  Google Scholar 

  48. Verrey F. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 2003;445:529–533

    PubMed  CAS  Google Scholar 

  49. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 1990;70:43–77

    PubMed  CAS  Google Scholar 

  50. Scanion K, Berkowitz K, Pallai M, Waxman S. Inhibition of methionine transport by methotrexate in mitogen stimulated human lymphocytes. Cancer Treat Rep 1983;67:631–639

    PubMed  Google Scholar 

  51. Rau FC, Philippi H, Rubio-Aliaga I, Daniel H, Weber A, Schwaiger M, et al Identification of subtypes of amino acid transporters in human tumor and inflammatory cells by reverse transcription-polymerase chain reaction [abstract]. J Nucl Med 2002;43(suppl):24

    Google Scholar 

  52. Verrey F, Meier C, Rossier G, Kuehn LC. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Eur J Physiol 2000;440:503–512

    Article  CAS  Google Scholar 

  53. Su TZ, Lunney E, Campbell G, Oxender DL. Transport of gabapentin, a gamma-amino acid drug, by system L alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes and CHO cells. J Neurochem 1995;64:2125–2131

    Article  PubMed  CAS  Google Scholar 

  54. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 2001;1514:291–302

    Article  PubMed  CAS  Google Scholar 

  55. Shennan DB, Thomson J, Barber MC, Travers MT. Functional and molecular characteristics of system L in human breast cancer cells. Biochim Biophys Acta 2003;1611:81–90

    Article  PubMed  CAS  Google Scholar 

  56. Ohkame H, Masuda H, Ishii Y, Kanai Y. Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in liver tumor lesions of rat models. J Surg Oncol 2001;78:265–271

    Article  PubMed  CAS  Google Scholar 

  57. Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 2002;21:580–589

    Article  PubMed  CAS  Google Scholar 

  58. Lahoutte T, Caveliers v, Camargo S, Franca R, Ramadan T, Veljkovic E, Mertens J, et al SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J Nucl Med 2004;45:1591–1596

    PubMed  CAS  Google Scholar 

  59. Babu E, Kanai Y, Chairoungdua A, Kim do K, Iribe Y, Tangtrongsup S, et al Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 2003;278:43838–43845

    Article  PubMed  CAS  Google Scholar 

  60. Collarini EJ, Campbell GS, Oxender DL. Evidence for a regulatory element controlling amino acid transport system L in Chinese hamster ovary cells. J Cell Biochem 1994;56:544–549

    Article  PubMed  CAS  Google Scholar 

  61. Shotwell MA, Jayme DW, Kilberg MS, Oxender DL. Neutral amino acid transport system in Chinese hamster ovary cells. J Biol Chem 1981;256:5422–5427

    PubMed  CAS  Google Scholar 

  62. Mitsumoto Y, Sato K, Ohyashiki T, Mohri T. Leucine-proton cotransport system in Chang liver cell. J Biol Chem 1983;261:4549–4554

    Google Scholar 

  63. Rajan DP, Kekuda R, Huang W, Devoe LD, Leibach FH, Prasad PD, et al Cloning and functional characterization of a Na+-independent, broad-specific neutral amino acid transporter from mammalian intestine. Biochim Biophys Acta 2001;463:6–14

    Google Scholar 

Download references

Acknowledgements

Useful advice given by P. Heiss, F. Rau and H. Philippi is gratefully acknowledged, as is the support provided by H. Hochrein, Institut für Mikrobiologie, Immunologie und Hygiene der Technischen Universität München, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reingard Senekowitsch-Schmidtke.

Additional information

Barbara Stöber and Ursula Tanase contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöber, B., Tanase, U., Herz, M. et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33, 932–939 (2006). https://doi.org/10.1007/s00259-005-0047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0047-5

Keywords

Navigation