Skip to main content

Advertisement

Log in

Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

SPECT examinations of neurotransmitter systems in the brain have to be comparable between centres to generate a comprehensive data pool, e.g. for multicentre studies. Equipment-specific effects on quantitative evaluations and corresponding methods for compensation, however, have been insufficiently examined. Previous studies have shown that quantitative results may vary significantly according to the imaging equipment used, thereby affecting clinical interpretation of the data. The aim of this study was to determine correction factors for common camera/collimator combinations based on standardised measurements of an anthropomorphic 3D basal ganglia phantom to compensate for the effects of different SPECT camera/collimator equipment. The latter may serve as a model for human studies of the dopaminergic system.

Methods

The striatum and background chambers of a commercially available phantom (RSD Alderson) were filled with various 123I concentrations encompassing specific striatum/background ratios from 0.6 to 16.1. This setup was imaged with the following four camera/collimator combinations: Siemens Multispect 3 fitted with LEHR and 123I parallel-hole collimators, Siemens ECAM with LEHR parallel-hole collimators and Philips Prism 3000 fitted with LEHR fanbeam collimators, using standardised protocols for acquisition and reconstruction. All scans were automatically co-registered to a SPECT template of the phantom and quantified using a 3D volume of interest (VOI) map based on a CT scan of the phantom. All striatal/background ratios calculated by SPECT were compared with the true ratios calculated from the measurements in a well counter. Regression analyses were performed and recovery correction factors between measured and true ratios determined.

Results

The relation between true and measured ratios could be sufficiently described by a linear regression for each camera/collimator combination without relevant improvement when using second-order polynomial regression models. The recovery correction factors and standard errors were 2.04±0.04 for the Philips Prism 3000, 2.67±0.03 for the Siemens Multispect 3/LEHR parallel-hole collimators, 2.15±0.03 for the Siemens Multispect 3/123I collimators and 2.81±0.03 for the Siemens ECAM. Percentage recovery ranged from 36% to 49%.

Conclusion

Measurements of a 3D basal ganglia phantom with various imaging devices revealed linear correlations between measured and true striatal/background ratios. Based on these findings, adjustment of quantitative results between different equipment seems possible, provided that acquisition, reconstruction and evaluation are adequately standardised. The use of identical evaluation methods in phantom and patient studies (comparable shape, size and location of the VOIs) might allow transfer of the calculated correction factors from phantom to studies of the dopaminergic system in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bergmann H, Busemann-Sokole E, Horton PW. Quality assurance and harmonisation of nuclear medicine investigations in Europe. Eur J Nucl Med 1995;22:477–480

    Article  PubMed  CAS  Google Scholar 

  2. Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;44:839–845

    PubMed  CAS  Google Scholar 

  3. Stodilka RZ, Kemp BJ, Prato FS, Nicholson RL. Importance of bone attenuation in brain SPECT quantification. J Nucl Med 1998;39:190–197

    PubMed  CAS  Google Scholar 

  4. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D2 transporter ligands. Eur J Nucl Med Mol Imaging 2002;29:BP30–BP35

    Article  PubMed  CAS  Google Scholar 

  5. Radau PE, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000;41:220–227

    PubMed  CAS  Google Scholar 

  6. Radau PE, Koch W, Holtmannspoetter M, Poepperl G, Tatsch K. Automated, objective software for 3D registration and analysis of dopamine transporter SPECT studies. J Nucl Med 2003;44:P12

    Google Scholar 

  7. Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005;46:1109–1118

    PubMed  Google Scholar 

  8. Koch W, Münzing W, Geworski L, Sonnenschein W, Höffken H, Czech N, et al Zentrumübergreifende Messungen an einem Basalganglienphantom zur Vereinheitlichung der SPECT Diagnostik des dopaminergen Systems. In: Brink I, editor. Nuklearmedizin als Paradigma molekularer Bildgebung. Berlin, Germany: Blackwell; 2002. p. 20

    Google Scholar 

  9. Hudson H, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:594–600

    Article  Google Scholar 

  10. Kauppinen T, Yang J, Kilpelainen H, Kuikka JT. Quantitation of neuroreceptors: a need for better SPECT imaging. Nuklearmedizin 2001;40:102–106

    PubMed  CAS  Google Scholar 

  11. Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med 1999;40:753–761

    PubMed  CAS  Google Scholar 

  12. Pirker W, Asenbaum S, Hauk M, Kandlhofer S, Tauscher J, Willeit M, et al Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44

    PubMed  CAS  Google Scholar 

  13. Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I, et al SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J Neural Transm Gen Sect 1993;94:137–146

    Article  PubMed  CAS  Google Scholar 

  14. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000;27:161–169

    Article  PubMed  CAS  Google Scholar 

  15. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al European Association of Nuclear medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D2 receptor ligands. Eur J Nucl Med Mol Imaging 2002;29:BP23–BP29

    Article  PubMed  CAS  Google Scholar 

  16. Hamann C, Koch W, Radau PE, Tatsch K. Iterative reconstruction or filtered backprojection for quantitative assessment of dopamine d2 receptor studies? J Nucl Med 2003;44:114P

    Google Scholar 

  17. Hashimoto J, Kubo A, Ogawa K, Amano T, Fukuuchi Y, Motomura N, et al Scatter and attenuation correction in technetium-99m brain SPECT. J Nucl Med 1997;38:157–162

    PubMed  CAS  Google Scholar 

  18. Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al Effects of scatter and attenuation correction on quantitative analysis of beta-CIT brain SPET. Nucl Med Commun 1999;20:159–165

    Article  PubMed  CAS  Google Scholar 

  19. Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 2003;44:1184–1193

    PubMed  CAS  Google Scholar 

  20. Yang J, Kuikka JT, Vanninen E, Kauppinen T, Lansimies E, Patomaki L. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data. Phantom and clinical patient studies. Nuklearmedizin 1999;38:49–55

    PubMed  CAS  Google Scholar 

  21. Kauppinen T, Koskinen MO, Alenius S, Vanninen E, Kuikka JT. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction. Eur J Nucl Med 2000;27:1380–1386

    Article  PubMed  CAS  Google Scholar 

  22. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–2221

    PubMed  CAS  Google Scholar 

  23. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400–1408

    PubMed  CAS  Google Scholar 

  24. Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990;17:1011–1022

    Article  PubMed  CAS  Google Scholar 

  25. Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900

    PubMed  CAS  Google Scholar 

  26. El Fakhri G, Moore SC, Maksud P, Aurengo A, Kijewski MF. Absolute activity quantitation in simultaneous 123I/99mTc brain SPECT. J Nucl Med 2001;42:300–308

    PubMed  CAS  Google Scholar 

  27. Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812

    Article  PubMed  CAS  Google Scholar 

  28. Hamann C, Koch W, Radau PE, Tatsch K. Automated evaluation of dopamine D2 receptor SPECT studies: Benefit in clinical routine? J Nucl Med 2003;44:P261–P262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, W., Radau, P.E., Münzing, W. et al. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 33, 495–502 (2006). https://doi.org/10.1007/s00259-005-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0036-8

Keywords

Navigation