Skip to main content

Advertisement

Log in

Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate regional differences between morphologic and functional changes in the same patients with mild Alzheimer’s disease (AD) using statistical parametric mapping (SPM) and voxel-based morphometry (VBM).

Methods

Thirty patients with very mild AD (mean age 66.8 years, mean MMSE score 24.0) and 30 age- and sex-matched normal volunteers underwent both 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and three-dimensional spoiled gradient echo (SPGR) magnetic resonance imaging (MRI). Statistical parametric mapping was used to conduct VBM analysis of the morphological data, which were compared voxel by voxel with the results of a similar analysis of the glucose metabolic data.

Results

In AD patients, VBM data indicated a significant gray matter volume density decrease in bilateral amygdala/hippocampus complex (p<0.05, corrected), while FDG-PET analysis showed significant glucose metabolic reductions in the posterior cingulate gyri and the right parietal lobule, compared with those in the normal control group.

Conclusion

In very mild AD, morphological change occurs in the medial temporal lobes, while in contrast, metabolic changes occur in the posterior cingulate gyri and parietal lobule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Brun A, Englund E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981;5:549–64.

    Google Scholar 

  • Jack CR Jr, Petersen RC, O’brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42:183–8.

    PubMed  Google Scholar 

  • Grundman M, Sencakova D, Jack CR Jr, Petersen RC, Kim HT, Schultz A, et al. Alzheimer’s Disease Cooperative Study. Brain MRI hippocampal volume and prediction of clinical status in a mild cognitive impairment trial. J Mol Neurosci 2002;19:23–7.

    Google Scholar 

  • Minoshima S, Giordani B, Barent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.

    CAS  PubMed  Google Scholar 

  • Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;41:1920–8.

    CAS  PubMed  Google Scholar 

  • Minoshima S. Imaging Alzheimer’s disease: clinical applications. Neuroimaging Clin North Am 2003;13:769–80.

    Google Scholar 

  • Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 2004;3:519–27.

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21.

    Article  CAS  PubMed  Google Scholar 

  • Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001;14:298–309.

    Google Scholar 

  • Burton EJ, Karas G, Paling SM, Barber R, Williams ED, Ballard CG, et al. Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage 2002;17:618–30.

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord 1998;9:317–22.

    Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–44.

    CAS  PubMed  Google Scholar 

  • Berg L. Clinical dementia rating. Psychopharmacol Bull 1988;24:637–9.

    Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Honma A, Fukuzawa K, Tsukada Y, Ishii T, Hasegawa K, Mohs RC. Development of a Japanese version of Alzheimer’s Disease Assessment Scale (ADAS). Jpn J Geriatr Psychiatry 1992;3:647–55.

    Google Scholar 

  • Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 1997;38:925–8.

    Google Scholar 

  • Friston KJ, Ashburner J, Frith CD, Poline J-B, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Human Brain Mapping 1995;3:165–89.

    Google Scholar 

  • Ashburner J, Neelin P, Collins DL, Evans AC, Friston KJ. Incorporating prior knowledge into image registration. Neuroimage 1997;6:344–52.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Human Brain Mapping 1999;7:254–66.

    Google Scholar 

  • Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic resonance scans for hippocampal atrophy in Alzheimer’s disease. Neurology 1991;41:51–4.

    Google Scholar 

  • Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967–72.

    Google Scholar 

  • Jack CR, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42:183–8.

    PubMed  Google Scholar 

  • Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, Evans A, et al. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 1992;42:1743–50.

    CAS  PubMed  Google Scholar 

  • de Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, et al. The radiologic prediction of Alzheimer’s disease: the atrophic hippocampal formation. AJNR 1993;14:897–906.

    Google Scholar 

  • Kiliany RJ, Moss MB, Albert MS, Sandor T, Tieman J, Jolesz F. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease. Arch Neurol 1993;50:949–54.

    Google Scholar 

  • Lehéricy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer’s disease. AJNR 1994;15:927–37.

    Google Scholar 

  • Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–43.

    Google Scholar 

  • Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med 1998;39:293–8.

    Google Scholar 

  • Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998;50:1585–93.

    Google Scholar 

  • Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43:304–11.

    PubMed  Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC. Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 1985;230:1179–81.

    Google Scholar 

  • Hyman BT, Kromer LJ, Van Hoesen GW. Reinnervation of the hippocampal perforant pathway zone in Alzheimer’s disease. Ann Neurol 1987;21:259–67.

    Google Scholar 

  • Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H 152 O positron emission tomography. Eur J Nucl Med 1997;24:670–3.

    Google Scholar 

  • Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002;16:515–25.

    Google Scholar 

  • Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994;344:895.

    Article  CAS  Google Scholar 

  • Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000;41:1155–62.

    CAS  PubMed  Google Scholar 

  • Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002;73:657–64.

    Google Scholar 

  • Matsuda H, Kanetaka H, Ohnishi T, Asada T, Imabayashi E, Nakano S, et al. Brain SPET abnormalities in Alzheimer’s disease before and after atrophy correction. Eur J Nucl Med Mol Imaging 2002;29:1502–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, K., Sasaki, H., Kono, A.K. et al. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 32, 959–963 (2005). https://doi.org/10.1007/s00259-004-1740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1740-5

Keywords

Navigation