Skip to main content
Log in

Are dual-phase 18F-FDG PET scans necessary in nasopharyngeal carcinoma to assess the primary tumour and loco-regional nodes?

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This prospective study aimed to investigate the efficacy of dual-phase positron emission tomography (PET) in evaluating the loco-regional status of nasopharyngeal carcinoma (NPC).

Methods

Eighty-four patients with newly diagnosed NPC and a fasting serum glucose level of <200 mg/dl were enrolled. [18F]fluoro-2-deoxy-D-glucose (18F-FDG) PET studies (at 40 min and 3 h after injection of 370 MBq 18F-FDG) and head and neck magnetic resonance imaging (MRI) were performed within 1 week. Diagnostic criteria for NPC comprised the histopathological findings, the joint judgments of the research team and the post-treatment outcome. Each lesion’s maximum standardised uptake value (SUV) and retention index were obtained. SUV data were evaluated using a paired t test. Receiver operating characteristic curves and calculation of the area under the curve (AUC) determined the discriminative power.

Results

18F-FDG PET was significantly superior to MRI in identifying lower neck NPC nodal metastasis (AUC: 1 vs 0. 972, P=0.046) and overall loco-regional metastases (AUC: 0.985 vs 0.958, P=0.036). However, 18F-FDG PET was similar to MRI in detecting primary tumour, as well as retropharyngeal, upper neck and supraclavicular nodal metastases. There was no significant difference between early phase (40 min) and delayed phase (3 h) 18F-FDG PET in the detection of primary tumours (accuracy: 100% vs 100%) or loco-regional nodal metastasis (AUC: 0.984 vs 0.985, P=0.834).

Conclusion

18F-FDG PET is superior to MRI in identifying lower neck nodal metastasis of NPC. Additional 3-h 18F-FDG PET contributes no further information in the detection of primary tumours or loco-regional metastatic nodes in untreated NPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheen WZ, Zhou DL, Luo KS. Long-term observation after radiotherapy for nasopharyngeal carcinoma (NPC). Int J Radiat Oncol Biol Phys 1989;16:311–4.

    PubMed  Google Scholar 

  2. Wang DC, Cai WM, Hu YH, Gu XZ. Long-term survival of 1,035 cases of nasopharyngeal carcinoma. Cancer 1988;61:2338–41.

    CAS  PubMed  Google Scholar 

  3. Mould RF, Tai TH. Nasopharyngeal carcinoma: treatments and outcomes in the 20th century. Br J Radiol 2002;75:307–39.

    CAS  PubMed  Google Scholar 

  4. Fang FM, Tsai WL, Go SF, Ho MW, Wu JM, Wang CJ, et al. Implications of quantitative tumor and nodal regression rates for nasopharyngeal carcinomas after 45 Gy of radiotherapy. Int J Radiat Oncol Biol Phys 2001;50:961–9.

    CAS  PubMed  Google Scholar 

  5. Teo P, Shiu W, Leung SF, Lee WY. Prognostic factors in nasopharyngeal carcinoma investigated by computer tomography: an analysis of 659 patients. Radiol Oncol 1992;23:79–93.

    CAS  Google Scholar 

  6. Yu KH, Teo P, Lee WY, Leung SF, Choi P, Johnson PJ. Patterns of early treatment failure in nonmetastatic nasopharyngeal carcinoma: a study based on CT scanning. Clin Oncol 1994;6:167–71.

    CAS  Google Scholar 

  7. Altun M, Tnenkeci N, Kaytan E, Meral R. Locally advanced nasopharyngeal carcinoma: computed tomography findings, clinical evaluation, and treatment outcome. Int J Radiat Oncol Biol Phys 2000;47:401–4.

    CAS  PubMed  Google Scholar 

  8. King AD, Ahuja AT, Leung SF, Lam WW, Teo P, Chan YL, et al. Neck node metastases from nasopharyngeal carcinoma: MR imaging and patterns of disease. Head Neck 2000;22:275–81.

    CAS  PubMed  Google Scholar 

  9. Hannah A, Scott AM, Tochon-Danguy H, Chan JG, Akhurst T, Berlangieri S, et al. Evaluation of 18F-fluorodeoxyglucose positron emission tomography and computed tomography with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg 2003;236:208–17.

    Article  Google Scholar 

  10. Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, El-Ghazi el A, Lehmann W, et al. Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20:1398–404.

    Article  Google Scholar 

  11. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 1996;23:1409–15.

    CAS  PubMed  Google Scholar 

  12. Yen TC, Ng KK, Ma SY, Chou HH, Tsai CS, Hsueh S, et al. Value of dual-phase 2-fluoro-2-deoxy-D-glucose positron emission tomography in cervical cancer. J Clin Oncol 2003;21:3651–8.

    PubMed  Google Scholar 

  13. Boerner AR, Weckesser M, Herzog H, Schmitz T, Audretsch W, Nitz U, et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 1999;26:226–30.

    CAS  PubMed  Google Scholar 

  14. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.

    Article  CAS  PubMed  Google Scholar 

  15. Nakamoto Y, Higashi T, Sakahara H, Tamaki N, Kogire M, Doi R, et al. Delayed 18F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 2000;89:2547–54.

    Article  Google Scholar 

  16. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase 18FDG-PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 2002;43:173–80.

    Google Scholar 

  17. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26:1345–8.

    CAS  PubMed  Google Scholar 

  18. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG-PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–5.

    PubMed  Google Scholar 

  19. Ma SY, See LC, Lai CH, Chou HH, Tsai CS, Ng KK, et al. Delayed 18F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 2003;44:1775–83.

    PubMed  Google Scholar 

  20. Lai CH, Huang KG, See LC, Yen TC, Tsai CS, Chang TC, et al. Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-D-glucose positron emission tomography. Cancer 2004;100:544–552.

    PubMed  Google Scholar 

  21. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Yen RF, ChangLai SP, et al. Comparison of 18-fluoro-2-deoxyglucose positron emission tomography and computed tomography in detection of cervical lymph node metastases of nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol 2000;109:1130–4.

    CAS  PubMed  Google Scholar 

  22. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from imflammatory processes. J Nucl Med 2001;42:1412–7.

    CAS  PubMed  Google Scholar 

  23. Hanley JA, McNeil BJ. A method of comparing the areas under the receiver operating characteristic curve derived from the same cases. Radiology 1983;148:839–43.

    CAS  PubMed  Google Scholar 

  24. Ng SH, Chang TC, Ko SF, Yen PS, Wan YL, Tang LM, et al. Nasopharyngeal carcinoma: MRI and CT assessment. Neuroradiology 1997;39:741–6.

    Google Scholar 

  25. Ng SH, Chang TC, Ko SF, Wan YL, Tang LM, Chen WC. MRI in recurrent nasopharyngeal carcinoma. Neuroradiology 1999;41:855–62.

    Google Scholar 

  26. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001;42:1551–5.

    CAS  PubMed  Google Scholar 

  27. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002;29:1393–8.

    Article  PubMed  Google Scholar 

  28. Goel A, Mathupala SP, Pedersen PL. Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003;278:15333–40.

    CAS  PubMed  Google Scholar 

  29. Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 2000;57:170–8.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson CA, Wang JQ, Leav I, Crane PD. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 1996;23:533–41.

    CAS  PubMed  Google Scholar 

  31. Suzuki S, Toyota T, Suzuki H, Goto Y. Partial purification from human mononuclear cells and placental plasma membranes of an insulin mediator which stimulates pyruvate dehydrogenase and suppresses glucose-6-phosphatase. Arch Biochem Biophys 1984;235:418–26.

    CAS  PubMed  Google Scholar 

  32. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996:37:1042–7.

    CAS  PubMed  Google Scholar 

  33. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002;29:443–53.

    CAS  PubMed  Google Scholar 

  34. Hara T, Kosaka N, Suzuki T, Kudo K, Niino H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest 2003;124:893–901.

    Article  CAS  PubMed  Google Scholar 

  35. Torizuka T, Zasadny KR, Recker B, Wahl RL. Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 1998;207:767–74.

    CAS  PubMed  Google Scholar 

  36. Weber AL, al-Arayedh S, Rashid A. Nasopharynx: clinical, pathologic, and radiologic assessment. Neuroimaging Clin North Am 2003;13:465–83.

    Google Scholar 

  37. Nitzsche EU, Hoegerle S, Mix M, Brink I, Otte A, Moser E, et al. Non-invasive differentiation of pancreatic lesions: is analysis of FDG kinetics superior to semiquantitative uptake value analysis?. Eur J Nucl Med Mol Imaging 2002;29:237–42.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants NSC 92-2314-B-182A-081 (Dr. Ng) from the National Science Council-Taiwan and CMRPG32034 (Dr. Yen) from the Chang Gung Memorial Hospital and University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hang Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, TC., Chang, YC., Chan, SC. et al. Are dual-phase 18F-FDG PET scans necessary in nasopharyngeal carcinoma to assess the primary tumour and loco-regional nodes?. Eur J Nucl Med Mol Imaging 32, 541–548 (2005). https://doi.org/10.1007/s00259-004-1719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1719-2

Keywords

Navigation