Skip to main content

Advertisement

Log in

O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the differential uptake of O-(2-[18F]fluorethyl)-L-tyrosine (FET) in suspected primary brain tumours.

Methods

Positron emission tomography (PET) was performed in 44 patients referred for the evaluation of a suspected brain tumour. Acquisition consisted of four 10-min frames starting upon i.v. injection of FET. Tumour uptake was calculated as the ratio of maximal tumour intensity to mean activity within a reference region (FETmax).

Results

FET uptake above the cortical level was observed in 35/44 lesions. All histologically confirmed gliomas and many other lesions showed FET uptake to a variable extent. No uptake was observed in nine lesions (one inflammatory lesion, one dysembryoplastic neuroepithelial tumour, one mature teratoma, six lesions without histological confirmation). An analysis of uptake dynamics was done in the patients with increased FET uptake (22 gliomas, three lymphomas, three non-neoplastic lesions, three lesions with unknown histology and four other primaries). Upon classification of tumours into low (i.e. WHO I and II) and high grade (i.e. WHO III and IV), a significant difference in FETmax between the two categories was observed only in the first image frame (0–10 min p.i.), with FETmax=2.0 in low-grade and 3.2 in high-grade tumours (p<0.05); no significant differences were found in frame 4 (30–40 min p.i.), with FETmax=2.4 vs 2.7. Similar results were obtained when the analysis was applied only to astrocytic tumours (2.0 vs 3.1 in the first frame; 2.4 vs 2.6 in the fourth frame).

Conclusion

These initial results indicate that FET PET is a useful method to identify malignant brain lesions. It appears that high- and low-grade brain tumours exhibit a different uptake kinetics of FET. A kinetic analysis of FET PET may provide additional information in the differentiation of suspected brain lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–45.

    CAS  PubMed  Google Scholar 

  2. Bergström M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 1983;7:1062–66.

    PubMed  Google Scholar 

  3. Mosskin M, Ericson K, Hindmarsh T, von Holst H, Collins VP, Bergstrom M, et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989;30:225–32.

    CAS  PubMed  Google Scholar 

  4. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993;186:45–53.

    CAS  PubMed  Google Scholar 

  5. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004;45(8):1293–98.

    CAS  PubMed  Google Scholar 

  6. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–85.

    CAS  PubMed  Google Scholar 

  7. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998;50:1316–22.

    CAS  PubMed  Google Scholar 

  8. Würker M, Herholz K, Voges J, Pietrzyk U, Treuer H, Bauer B, et al. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 1996;23:583–86.

    PubMed  Google Scholar 

  9. Langen KJ, Ziemons K, Kiwit JCW, Herzog H, Kuwert T, Bock WJ, et al. [123I]-Iodo-α-methyltyrosine SPECT and [11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997;38:517–22.

    CAS  PubMed  Google Scholar 

  10. Matheja P, Rickert CH, Weckesser M, Palkovic S, Löttgen J, Riemann B, et al. Sequential scintigraphic strategy for the differentiation of brain tumours. Eur J Nucl Med 2000;27:550–58.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt D, Gottwald U, Langen KJ, Weber F, Hertel A, Floeth F, et al. 3-[123I]Iodo-α-methyl-L-tyrosine uptake in cerebral gliomas: relationship to histological grading and prognosis. Eur J Nucl Med 2001;28:855–61.

    Article  CAS  PubMed  Google Scholar 

  12. Weber WA, Dick S, Reidl G, Dzewas B, Busch R, Feldmann HJ, et al. Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 2001;42:1144–50.

    CAS  PubMed  Google Scholar 

  13. Weckesser M, Matheja P, Schwarzrock A, Rickert CH, Strater R, Palkovic S, et al. Prognostic significance of amino acid transport imaging in patients with brain tumors. Neurosurgery 2002;50:958–64.

    PubMed  Google Scholar 

  14. Woesler B, Kuwert T, Morgenroth C, Matheja P, Palkovic S, Schäfers M, et al. Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 1997;24:428–34.

    Article  CAS  PubMed  Google Scholar 

  15. Riemann B, Papke K, Hoess N, Kuwert T, Weckesser M, Matheja P, et al. Noninvasive grading of untreated gliomas: a comparative study of MR imaging and 3-(iodine 123)-L-alpha-methyltyrosine SPECT. Radiology 2002;225:567–74.

    PubMed  Google Scholar 

  16. Bader JB, Samnick S, Moringlane JR, Feiden W, Schaefer A, Kremp S, et al. Evaluation of L-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 1999;26:144–51.

    Article  CAS  PubMed  Google Scholar 

  17. Kuwert T, Woesler B, Morgenroth C, Lerch H, Schäfers M, Palkovic S, et al. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 1998;39:23–27.

    CAS  PubMed  Google Scholar 

  18. Levivier M, Wikler D, Goldman S, et al. Positron emission tomography in stereotactic conditions as a functional imaging technique for neurosurgical guidance. In: Alexander EI, Maciunas RJ, editors. Advanced neurosurgical navigation. New York: Thieme Medical; 1999. p. 85–99.

    Google Scholar 

  19. Hamacher K, Coenen HH. Efficient routine production of the F-18-labelled amino acid O-(2-[F-18]fluoroethyl)-L-tyrosine. Appl Radiat Isotopes 2002;57:853–6.

    Article  CAS  Google Scholar 

  20. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205–12.

    CAS  PubMed  Google Scholar 

  21. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl−11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000;27:542–9.

    Article  CAS  PubMed  Google Scholar 

  22. Messing-Junger AM, Floeth FW, Pauleit D, Reifenberger G, Willing R, Gartner J, et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 2002;18:445–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pauleit D, Langen KJ, Floeth F, Sabel M, Reifenberger G, Hamacher K, et al. Improved delineation of the tumor extension using 18F-FET PET compared with MRI in cerebral gliomas. J Nucl Med 2002;43(Suppl):112.

    Google Scholar 

  24. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999;40:1367–73.

    CAS  PubMed  Google Scholar 

  25. Langen KJ, Jarosch M, Muhlensiepen H, Hamacher K, Broer S, Jansen P, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 2003;30:501–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Müller HW, et al. Whole-body distribution and dosimetry of O-(2-[(18)F]fluoroethyl)-l-tyrosine. Eur J Nucl Med Mol Imaging 2003;30:519–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Ms. Eugenie Rickert for skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Weckesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckesser, M., Langen, K., Rickert, C. et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32, 422–429 (2005). https://doi.org/10.1007/s00259-004-1705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1705-8

Keywords

Navigation