Skip to main content
Log in

Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to visualise experimental atherosclerotic lesions using radiolabelled antisense oligonucleotides (ASONs).

Methods

Atherosclerosis was induced in New Zealand White rabbits fed 1% cholesterol for approximately 60 days. In vivo and ex vivo imaging was performed in atherosclerotic rabbits and normal control rabbits after i.v. injection of 92.5±18.5 MBq 99mTc-labelled ASON or 99mTc-labelled sense oligonucleotides. Immediately after the in vivo imaging, the animals were sacrificed and ex vivo imaging of the aortic specimens was performed. Biodistribution of radiolabelled c-myc ASON was evaluated in vivo in atherosclerotic rabbits.

Results

Planar imaging revealed accumulation of 99mTc-labelled c-myc ASON in atherosclerotic lesions along the artery wall. Ex vivo imaging further demonstrated that the area of activity accumulation matched the area of atherosclerotic lesions. In contrast, no atherosclerotic lesions were found in the vessel wall and no positive imaging results were obtained in animals of the control group.

Conclusion

This molecular imaging approach has potential for non-invasive imaging of atherosclerotic plaques at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hamm CW, Bertrand M, Braunwald E. Acute coronary syndrome without ST elevation: implementation of new guidelines. Lancet 2001;358:1533–8.

    Article  CAS  PubMed  Google Scholar 

  2. Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 1997;38:1788–96.

    CAS  PubMed  Google Scholar 

  3. Green DW, Roh H, Pippin J, Drebin JA. Antisense oligonucleotides: an evolving technology for the modulation of gene expression in human disease. J Am Coll Surg 2000;191:93–105.

    Article  CAS  PubMed  Google Scholar 

  4. Tavitian B. In vivo imaging with oligonucleotides for diagnosis and drug development. Gut 2003;52(Suppl 4):iv40–7.

    Article  CAS  PubMed  Google Scholar 

  5. Thurberg BL, Collins T. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol 1998;9:387–96.

    Article  CAS  PubMed  Google Scholar 

  6. de Nigris F, Lerman LO, Rodriguez-Porcel M, De Montis MP, Lerman A, Napoli C. C-myc activation in early coronary lesions in experimental hypercholesterolemia. Biochem Biophys Res Commun 2001;281:945–50.

    Article  PubMed  Google Scholar 

  7. de Nigris F, Youssef T, Ciafre S, Franconi F, Anania V, Condorelli G, et al. Evidence for oxidative activation of c-myc-dependent nuclear signaling in human coronary smooth muscle cells and in early lesions of Watanabe heritable hyperlipidemic rabbits: protective effects of vitamin E. Circulation 2000;102:2111–7.

    PubMed  Google Scholar 

  8. Geng YJ. Molecular signal transduction in vascular cell apoptosis. Cell Res 2001;11:253–64.

    CAS  PubMed  Google Scholar 

  9. Bennett MR. Apoptosis in the cardiovascular system. Heart 2002;87:480–7.

    Article  PubMed  Google Scholar 

  10. Kockx MM, De Meyer GRY, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998;97:2307–15.

    CAS  PubMed  Google Scholar 

  11. Allen RT, Hunter WJ III, Agrawal DK. Morphologic and temporal analysis of vascular smooth muscle cell apoptosis induced by c-myc and E1A. Scanning 1998;20:577–86.

    CAS  PubMed  Google Scholar 

  12. Winnard P Jr, Chang F, Rusckowski M, Mardirossian G, Hnatowich DJ. Preparation and use of NHS-MAG3 for technetium-99m labeling of DNA. Nucl Med Biol 1997;24:425–32.

    Article  CAS  PubMed  Google Scholar 

  13. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989;9:895–907.

    CAS  PubMed  Google Scholar 

  14. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989;9:908–18.

    CAS  PubMed  Google Scholar 

  15. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on vascular lesions of the Council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995;15:1512–31.

    CAS  PubMed  Google Scholar 

  16. Ord JM, Hasapes J, Daugherty A, Thorpe SR, Bergmann SR, Sobel BE. Imaging of thrombi with tissue-type plasminogen activator rendered enzymatically inactive and conjugated to a residualizing label. Circulation 1992;85:288–297.

    CAS  PubMed  Google Scholar 

  17. Minar E, Ehringer H, Dudczak R, Schofl R, Jung M, Koppensteiner R, et al. Indium-111-labeled platelet scintigraphy in carotid atherosclerosis. Stroke 1989;20:27–33.

    CAS  PubMed  Google Scholar 

  18. Tozer EC, Carew TE. Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ Res 1997;80:208–18.

    CAS  PubMed  Google Scholar 

  19. Narula J, Petrov A, Pak KY, Ditlow C, Chen F, Khaw BA. Noninvasive detection of atherosclerotic lesions by 99mTc-based immunoscintigraphic targeting of proliferating smooth muscle cells. Chest 1997;111:1684–90.

    CAS  PubMed  Google Scholar 

  20. Elmaleh DR, Narula J, Babich JW, Petrov A, Fischman AJ, Khaw BA, et al. Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates. Proc Natl Acad Sci U S A 1998;95:691–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003;108:3134–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YM, Wang Y, Liu N, Zhu ZH, Rusckowski M, Hnatowich DJ. In vitro investigations of tumor targeting with 99mTc-labeled antisense DNA. J Nucl Med 2001;42:1660–9.

    CAS  PubMed  Google Scholar 

  23. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, Sfakianakis GN. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 1994;35:1054–63.

    CAS  PubMed  Google Scholar 

  24. Shi Y, Hutchinson HG, Hall DJ, Zalewski A. Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation 1993;88:1190–5.

    CAS  PubMed  Google Scholar 

  25. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  26. Parkes JL, Cardell RR, Hubbard FC Jr, Hubbard D, Meltzer A, Penn A. Cultured human atherosclerotic plaque smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene. Am J Pathol 1991;138:765–75.

    CAS  PubMed  Google Scholar 

  27. Younes CK, Boisgard R, Tavitian B. Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des 2002;8:1451–66.

    CAS  PubMed  Google Scholar 

  28. Colangelo S, Langille BL, Steiner G, et al. Alterations in endothelial F-actin microfilaments in rabbit aorta in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1998;18:52–6.

    CAS  PubMed  Google Scholar 

  29. Nielsen LB. Transfer of low density lipoprotein into the arterial wall and the risk of atherosclerosis. Arteriosclerosis 1996;123:1–15.

    Article  CAS  Google Scholar 

  30. Kristensen SD, Ravn HB, Falk E. Insights into the pathophysiology of unstable coronary artery disease. Am J Cardiol 1997;80:5E–9E.

    Article  CAS  PubMed  Google Scholar 

  31. Daugherty A. Mouse models of atherosclerosis. Am J Med Sci 2002;323:3–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Donald J. Hnatowich from the University of Massachusetts Medical Center, USA, for providing the MAG3 chelator. This work was supported by grant No. 30070310 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuren Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, G., Zhang, Y., Cao, W. et al. Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides. Eur J Nucl Med Mol Imaging 32, 6–14 (2005). https://doi.org/10.1007/s00259-004-1700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1700-0

Keywords

Navigation