Skip to main content
Log in

Small animal PET: aspects of performance assessment

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Dedicated small animal positron emission tomography (PET) systems are increasingly prevalent in industry (e.g. for preclinical drug development) and biological research. Such systems permit researchers to perform animal studies of a longitudinal design characterised by repeated measurements in single animals. With the advent of commercial systems, scanners have become readily available and increasingly popular. As a consequence, technical specifications are becoming more diverse, making scanner systems less broadly applicable. The investigator has, therefore, to make a decision regarding which type of scanner is most suitable for the intended experiments. This decision should be based on gantry characteristics and the physical performance. The first few steps have been taken towards standardisation of the assessment of performance characteristics of dedicated animal PET systems, though such assessment is not yet routinely implemented. In this review, we describe current methods of evaluation of physical performance parameters of small animal PET scanners. Effects of methodologically different approaches on the results are assessed. It is underscored that particular attention has to be paid to spatial resolution, sensitivity, scatter fraction and count rate performance. Differences in performance measurement methods are described with regard to commercially available systems, namely the Concorde MicroPET systems P4 and R4 and the quad-HIDAC. Lastly, consequences of differences in scanner performance parameters are rated with respect to applications of small animal PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tournai MP, Jaszcak RJ, Turkington TG, Coleman RE. Small-animal PET: advent of a new era of PET research. J Nucl Med 1999;40:1176–8.

    PubMed  Google Scholar 

  2. Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.

    Article  CAS  PubMed  Google Scholar 

  3. Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 2002;29:98–114.

    Article  PubMed  Google Scholar 

  4. Myers R, Hume S. Small animal PET. Eur Neuropsychopharmacol 2002;12:545–55.

    Article  CAS  PubMed  Google Scholar 

  5. Hume SP, Myers R. Dedicated small animal scanners: a new tool for drug development? Curr Pharm Design 2002;8:1497–511.

    CAS  Google Scholar 

  6. Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography. J Nucl Med 1991;32:2342–50.

    CAS  PubMed  Google Scholar 

  7. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-1994: performance measurements of positron emission tomographs. Washington: National Electrical Manufacturers Association; 1994.

    Google Scholar 

  8. Daube-Witherspoon ME, Karp JE, Casey ME, et al. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med 2002;43:1398–409.

    PubMed  Google Scholar 

  9. National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001: performance measurements of positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2001.

    Google Scholar 

  10. Tai YC, Chatziioannou A, Siegel S, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46:1845–62.

    Article  CAS  PubMed  Google Scholar 

  11. Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30:737–47.

    PubMed  Google Scholar 

  12. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999;46:468–73.

    Article  Google Scholar 

  13. Missimer J, Madi Z, Honer M, Keller C, Schubiger A, Ametamey SM. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 2004;49:2069–81.

    Article  PubMed  Google Scholar 

  14. Bloomfield PM, Rajeswaran S, Spinks TJ, et al. The design and physical characteristics of a small animal positron emission tomograph. Phys Med Biol 1995;40:1105–26.

    Article  CAS  PubMed  Google Scholar 

  15. Bloomfield PM, Myers R, Hume SP, et al. Three-dimensional performance of a small-diameter positron emission tomograph. Phys Med Biol 1997;42:389–400.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe M, Okada H, Shimizu K, et al. A high resolution animal PET scanner using compact PS-PMT detectors. IEEE Trans Nucl Sci 1997;44:1277–82.

    Article  CAS  Google Scholar 

  17. Weber S, Herzog H, Cremer M, et al. Evaluation of the TierPET system. IEEE Trans Nucl Sci 1999;46:1177–83.

    Article  Google Scholar 

  18. Weber S, Bauer A, Herzog H, et al. Recent results of the TierPET scanner. IEEE Trans Nucl Sci 2000;47:1665–9.

    Article  Google Scholar 

  19. Ziegler SI, Pichler BJ, Boening G, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001;28:136–43.

    Article  CAS  PubMed  Google Scholar 

  20. Siegel S, Vaquero JJ, Aloj L, et al. Initial results from a PET/planar small animal imaging system. IEEE Trans Nucl Sci 1999;46:571–5.

    Article  Google Scholar 

  21. Lecomte R, Cadorette J, Rodrigue S, et al. Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 1996;43:1952–7.

    Article  Google Scholar 

  22. Bruyndonckx P, Liu X, Tavernier S, Zhang S. Performance study of a 3D small animal PET scanner based on BaF2 crystals and a photo sensitive wire chamber. Nucl Instrum Methods A 1997;392:407–13.

    Article  CAS  Google Scholar 

  23. Chatziioannou AF, Cherry S, Shao Y, et al. Performance evaluation of microPET: a high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999;40:1164–75.

    CAS  PubMed  Google Scholar 

  24. Di Domenico G, Motta A, Zavattini G, et al. Characterization of the Ferrara animal PET scanner. Nucl Instrum Methods A 2002;477:505–508.

    Google Scholar 

  25. Bruyndonckx P, Xuan L, Rajeswaran S, Smolik W, Tavernier S, Shuping Z. Design and physical characteristics of a small animal PET using BaF2 crystals and a photosensitive wire chamber. Nucl Instrum Methods A 1996;382:589–600.

    Article  Google Scholar 

  26. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;36:964–8.

    Article  CAS  Google Scholar 

  27. Defrise M, Kinahan P. Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Townsend DW, editors. The theory and practice of 3D PET. Dordrecht: Kluwer Academic; 1998. p 11–53.

    Google Scholar 

  28. Defrise M, Kinahan PE, Townsend D, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 1997;16:145–58.

    Article  CAS  PubMed  Google Scholar 

  29. Liow JS, Strother SC. The convergence of object-dependent resolution in maximum likelihood based tomographic resolution. Phys Med Biol 1993;38:55–70.

    Article  CAS  PubMed  Google Scholar 

  30. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.

    Article  CAS  PubMed  Google Scholar 

  31. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 1990;37:783–8.

    Article  Google Scholar 

  32. Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996;41:1755–76.

    Article  CAS  PubMed  Google Scholar 

  33. Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 1992;39:502–5.

    Article  CAS  Google Scholar 

  34. Reader AJ, Allay S, Bakatselos F, et al. One-pass list-mode EM algorithm for high resolution 3D PET image reconstruction into large arrays. IEEE Trans Nucl Sci 2002;49:693–9.

    Article  Google Scholar 

  35. Myers R, Hume S, Bloomfield P, Jones T. Radio-imaging in small animals. J Psychopharmacol 1999;13:352–7.

    CAS  PubMed  Google Scholar 

  36. Myers R. The biological application of small animal PET imaging. Nucl Med Biol 2001;28:585–93.

    Article  CAS  PubMed  Google Scholar 

  37. Cherry SR. Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 2001;41:482–91.

    Article  CAS  PubMed  Google Scholar 

  38. Rowland DJ, Lewis JS, Welch MJ. Molecular imaging: the application of small animal positron emission tomography. J Cell Biochem 2002;39(Suppl):110–5.

    Article  Google Scholar 

  39. Herschman HR. Micro-PET imaging and small animal models of disease. Curr Opin Immunol 2003;15:378–84.

    Article  CAS  PubMed  Google Scholar 

  40. Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med 1998;25:173–6.

    Article  CAS  PubMed  Google Scholar 

  41. Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian M. Effect of positron range on spatial resolution. J Nucl Med 1975;16:649–52.

    CAS  PubMed  Google Scholar 

  42. Cho ZH, Chan JK, Ericksson L, et al. Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 1975;16:1174–6.

    CAS  PubMed  Google Scholar 

  43. Derenzo SE. Precision measurement of annihilation point spread distributions for medically important positron emitters. In: Hasiguti RR, Fujiwara K, editors. Positron annihilation. Sendai: The Japan Institute of Metals; 1979. p 819–23.

    Google Scholar 

  44. Palmer RP, Brownell GL. Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imaging 1992;11:373–8.

    Article  Google Scholar 

  45. Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44–51.

    Article  PubMed  Google Scholar 

  46. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–99.

    Article  CAS  PubMed  Google Scholar 

  47. Laforest R, Rowland DJ, Welch MJ. microPET imaging with nonconventional isotopes. IEEE Trans Nucl Sci 2002;49:2119–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H.H. Coenen, Institute of Nuclear Chemistry, Research Center Jülich, as well as W. Enghardt, Research Center Rossendorf, Germany, representing the consortium radiochemistry/radiopharmacy, for valuable discussions. We would also like to thank Horst Halling, Central Institute for Electronics, Research Center Jülich, for his helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, S., Bauer, A. Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31, 1545–1555 (2004). https://doi.org/10.1007/s00259-004-1683-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1683-x

Keywords

Navigation