Skip to main content

Advertisement

Log in

A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia is associated with tumor aggressiveness and is an important cause of resistance to radiation therapy and chemotherapy. Assays of tumor hypoxia could provide selection tools for hypoxia-modifying treatments. The purpose of this study was to develop and characterize a rodent tumor model with a reporter gene construct that would be transactivated by the hypoxia-inducible molecular switch, i.e., the upregulation of HIF-1.

Methods

The reporter gene construct is the herpes simplex virus 1-thymidine kinase (HSV1-tk) fused with the enhanced green fluorescent protein (eGFP) under the regulation of an artificial hypoxia-responsive enhancer/promoter. In this model, tumor hypoxia would up-regulate HIF-1, and through the hypoxia-responsive promoter transactivate the HSV1-tkeGFP fusion gene. The expression of this reporter gene can be assessed with the 124I-labeled reporter substrate 2′-fluoro-2′-deoxy-1-β-d-arabinofuranosyl-5-iodouracil (124I-FIAU), which is phosphorylated by the HSV1-tk enzyme and trapped in the hypoxic cells. Animal positron emission tomography (microPET) and phosphor plate imaging (PPI) were used in this study to visualize the trapped 124I-FIAU, providing a distribution of the hypoxia-induced molecular events. The distribution of 124I-FIAU was also compared with that of an exogenous hypoxic cell marker, 18F-fluoromisonidazole (FMISO).

Results

Our results showed that 124I-FIAU microPET imaging of the hypoxia-induced reporter gene expression is feasible, and that the intratumoral distributions of 124I-FIAU and 18F-FMISO are similar. In tumor sections, detailed radioactivity distributions were obtained with PPI which also showed similarity between 124I-FIAU and 18F-FMISO.

Conclusion

This reporter system is sufficiently sensitive to detect hypoxia-induced transcriptional activation by noninvasive imaging and might provide a valuable tool in studying tumor hypoxia and in validating existing and future exogenous markers for tumor hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thrall DE, Rosner GL, Azuma C, McEntee MC, Raleigh JA. Hypoxia marker labeling in tumor biopsies: quantification of labeling variation and criteria for biopsy sectioning. Radiother Oncol 1997;53:171–6. DOI 10.1016/S0167-8140(97)01931-2

    Article  Google Scholar 

  2. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 1999;53:113–7. DOI 10.1016/S0167-8140(99)00102-4

    Article  CAS  PubMed  Google Scholar 

  3. Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–15.

    CAS  PubMed  Google Scholar 

  4. Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 2000;57:39–43. DOI 10.1016/S0167-8140(00)00223-1

    Article  CAS  PubMed  Google Scholar 

  5. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–3.

    CAS  PubMed  Google Scholar 

  6. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic outcome—a preliminary report. Int J Radiat Oncol Biol Phys 2003;55:1233–8. DOI 10.1016/S0360-3016(02)04477-2

    Article  PubMed  Google Scholar 

  7. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 2003;30:844–50. DOI 10.1007/s00259-003-1130-4

    CAS  PubMed  Google Scholar 

  8. Chapman JD, Zanzonico P, Ling CC. On measuring hypoxia in individual tumors with radiolabeled agents. J Nucl Med 2001;42:1653–5.

    CAS  PubMed  Google Scholar 

  9. Höckel M, Knoop C, Schlenger K, Vorndran B, Knapstein PG, Vaupel P. Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix. Adv Exp Med Biol 1994;345:445–50.

    PubMed  Google Scholar 

  10. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygenation measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001;61:6394–9.

    CAS  PubMed  Google Scholar 

  11. Nordsmark M, Bentzen SM, Overgaard J. Measurement of human tumour oxygenation status by a polarographic needle electrode. Acta Oncol 1994;33:383–9.

    CAS  PubMed  Google Scholar 

  12. Nordsmark M, Loncaster J, Chou S-C, Havsteen H, Lindegaard JC, Davidson SE, et al. Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 2001;49:581–6. DOI 10.1016/S0360-3016(00)01493-0

    Article  CAS  PubMed  Google Scholar 

  13. Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Grahm MM, Krohn KA. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996;36:417–28. DOI 10.1016/S0360-3016(96)00325-2

    Article  CAS  PubMed  Google Scholar 

  14. West CML, Cooper RA, Loncaster JA, Wilks DP, Bromley M. Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 2001;61:2907–10.

    CAS  PubMed  Google Scholar 

  15. Lehtio K, Oikonen V, Gronroos T, Eskola O, Kalliokoski K, Bergman J, et al. Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [15O]H2O and [18F]fluoroerythronitroimidazole PET. J Nucl Med 2001;42:1653–5.

    CAS  PubMed  Google Scholar 

  16. Dolbier WRJ, Li AR, Koch CJ, Shiue CY, Kachur AV. [18F]-EF5, a marker for PET detection of hypoxia: synthesis of precuror and a new fluorination procedure. Appl Radiat Isot 2001;54:73–80.

    Article  CAS  PubMed  Google Scholar 

  17. Chao KSC, Bosch WR, Mutic S, Lewis JS, Dehdashti F, Mintun MA, et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001;49:1171–82.

    Article  CAS  PubMed  Google Scholar 

  18. Bentzen L, Keiding S, Nordsmark M, Falborg L, Hansen SB, Keller J, et al. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 2003;67:339–44.

    Article  CAS  PubMed  Google Scholar 

  19. Semenza GL. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 2001;107:1–3. DOI 10.1016/S0092-8674(01)00518-9

    Article  CAS  PubMed  Google Scholar 

  20. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721–82. DOI 10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  21. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–8. DOI 10.1038/35025215

    Article  CAS  PubMed  Google Scholar 

  22. Yuan J, Narayanan L, Rockwell S, Glazer PM. Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 2000;60:4372–6.

    CAS  PubMed  Google Scholar 

  23. Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000;76:589–605.

    Article  CAS  PubMed  Google Scholar 

  24. Chavez JC, LaManna JC. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 2002;22:8922–31.

    Google Scholar 

  25. Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, et al. Glut-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 2003;104:85–91.

    Article  CAS  PubMed  Google Scholar 

  26. Vordermark D, Brown JM. Evaluation of hypoxia-inducible factor-1α (HIF-1α) as an intrinsic marker of tumor hypoxia in U87 MG human glioblastoma: in vitro and xenograft studies. Int J Radiat Oncol Biol Phys 2003;56:1184–93.

    Article  CAS  PubMed  Google Scholar 

  27. Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, et al. Molecular imaging of spatial heterogeneity and temporal dynamics of hypoxia-induced HIF-1 signal transduction activity in tumors in living mice. Cancer Res 2004;64:6101–8.

    PubMed  Google Scholar 

  28. Tjuvajev JG, Stockhammer G, Desi R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:1352–60.

    Google Scholar 

  29. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58:4333–41.

    CAS  PubMed  Google Scholar 

  30. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, et al. Imaging TCR-depenent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001;3:480–6. DOI 10.1038/sj.1522-8002.7900204

    Article  CAS  PubMed  Google Scholar 

  31. Doubrovin M, Ponomarev V, Serganova I, Soghomonian S, Myagawa T, Beresten T, et al. A new reporter gene system for molecular-genetic imaging of CNS with intact blood–brain barrier: bacterial xanthine phosphoribosyl transferase-radiolabeled xanthine. Mol Imaging 2003;2:36–48.

    Article  Google Scholar 

  32. Riviere I, Sadelain M. In: Robbins P, editor. Gene therapy protocols: methods in molecular biology. Totowa: Humana; 1997. p. 59–78.

    Google Scholar 

  33. Gallardo HF, Tan C, Ory D, Sadelain M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 1997;90:952–7.

    CAS  PubMed  Google Scholar 

  34. Zanzonico P, O’Donoghue J, Chapman JD, Schneider R, Cai S, Larson S, et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 2004;31:117–28. DOI 10.1007/s00259-003-1322-y

    Article  PubMed  Google Scholar 

  35. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087–95.

    CAS  PubMed  Google Scholar 

  36. Hackman T, Doubrovin M, Balatoni J, Beresten T, Ponomarev V, Beattie B, et al. Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene expression with [124I]FIAU and PET. Mol Imaging 2002;1:36–42.

    Article  CAS  PubMed  Google Scholar 

  37. Lim JL, Berridge MS. An efficient radiosynthesis of [18F]fluoromisonidazole. Appl Radiat Isot 1993;44:1085–91.

    Article  CAS  PubMed  Google Scholar 

  38. Balatoni J, Finn R, Tjuvajev J, Larson S, Blasberg R. Synthesis and quality assurance of radioiodinated 2-fluoro-2-deoxy-1-d-arabinofuranosyl-5-iodouracil. J Labelled Comp Radiopharm 1997;103:4087–95.

    Google Scholar 

  39. Martin GV, Caldwell JH, Graham MM, Grierson JR, Kroll K, Cowan MJ, et al. Noninvasive detection of hypoxic myocardium using fluorine-18-fluoromisonidazole and positron emission tomography. J Nucl Med 1992;33:2202–8.

    CAS  PubMed  Google Scholar 

  40. Rasey JS, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989;17:985–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grant RO1 CA84596 from the NCI, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Clifton Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, B., Burgman, P., Zanzonico, P. et al. A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging 31, 1530–1538 (2004). https://doi.org/10.1007/s00259-004-1673-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1673-z

Keywords

Navigation