Skip to main content

Advertisement

Log in

Pharmacokinetics and biodistribution of 177Lu-labeled multivalent single-chain Fv construct of the pancarcinoma monoclonal antibody CC49

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Lutetium-177 (177Lu) is a radionuclide of interest for radioimmunoimaging (RII) and radioimmunotherapy (RIT) on account of its short half-life (161 h) and the ability to emit both β and γ radiation. Single-chain Fv (scFv) constructs have shown advancement in cancer diagnosis and therapy due to the pharmacokinetics advantage and seem to be intriguing tools in oncology. The objective of this study was to evaluate the pharmacokinetics and biodistribution characteristics of the 177Lu-labeled tetravalent scFv of CC49 MAb and intact CC49 IgG in vivo.

Methods

Conjugation and labeling conditions of multivalent scFv with 177Lu were optimized without affecting integrity and immunoreactivity. For this purpose, multivalent scFv constructs {dimer, sc(Fv)2; tetramer, [sc(Fv)2]2} of the MAb CC49 were expressed as secretory proteins in Pichia pastoris. The purified scFv constructs and IgG form of CC49 were conjugated with a bifunctional chelating agent, ITCB-DTPA, and labeled with 177Lu. The comparative biodistribution, blood clearance, and tumor-targeting characteristics of 177Lu-labeled tetravalent [sc(Fv)2]2 construct of CC49 MAb and intact CC49 IgG were investigated in the athymic mice bearing LS-174T xenografts.

Results

Approximately, 90% of 177Lu incorporation was achieved using ITCB-DTPA chelator, and the labeled immunoconjugates maintained integrity and immunoreactivity. Blood clearance studies demonstrated an alpha half-life (t1/2α) of 177Lu-labeled [sc(Fv)2]2 and IgG of CC49 at 4.40 and 9.50 min and a beta half-life (t1/2β) at 375 and 2,193 min, respectively. At 8 h post administration, the percent of the injected dose accumulated/gram (%ID/g) of the LS-174T tumor was 6.4±1.3 and 8.9±0.6 for 177Lu-labeled [sc(Fv)2]2 and IgG of CC49, respectively, in the absence of l-lysine. The corresponding values were 8.0±0.6 and 8.4±1.2 in the presence of l-lysine. Renal accumulation of [sc(Fv)2]2 was significantly (p<0.005) reduced in the presence of l-lysine.

Conclusion

The results of this study demonstrate that the ITCB-DTPA conjugation and 177Lu-labeling of scFvs are feasible without influencing the antibody characteristics. 177Lu-labeled [sc(Fv)2]2 showed faster clearance and equivalent tumor uptake at 8 h compared with its IgG form, with a markedly reduced renal uptake in the presence of l-lysine. Therefore, 177Lu-labeled [sc(Fv)2]2 may be a potential radiopharmaceutical for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chester KA, Hawkins RE. Clinical issues in antibody design. Trends Biotechnol 1995;13:294–300.

    Article  CAS  PubMed  Google Scholar 

  2. Chester KA, Mayer A, Bhatia J, Robson L, Spencer DI, Cooke SP, et al. Recombinant anti-carcinoembryonic antigen antibodies for targeting cancer. Cancer Chemother Pharmacol 2000;46(Suppl):S8–12.

    CAS  PubMed  Google Scholar 

  3. Colcher D, Zalutsky M, Kaplan W, Kufe D, Austin F, Schlom J. Radiolocalization of human mammary tumors in athymic mice by a monoclonal antibody. Cancer Res 1983;43:736–42.

    CAS  PubMed  Google Scholar 

  4. Colcher D, Esteban J, Mornex F. Use of monoclonal antibodies as radiopharmaceuticals for the localization of human carcinoma xenografts in athymic mice. Methods Enzymol 1986;121:802–16.

    Article  CAS  PubMed  Google Scholar 

  5. Colcher D, Bird R, Roselli M, Hardman KD, Johnson S, Pope S, et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst 1990;82:1191–7.

    CAS  PubMed  Google Scholar 

  6. Meredith RF, LoBuglio AF, Spencer EB. Recent progress in radioimmunotherapy for cancer. Oncology (Huntingt) 1997;11:979–84 (see also page 987).

    CAS  Google Scholar 

  7. Goel A, Colcher D, Baranowska-Kortylewicz J, Augustine S, Booth BJ, Pavlinkova G, Batra SK. Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application. Cancer Res 2000;60:6964–71.

    CAS  PubMed  Google Scholar 

  8. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 2002;13:603–8.

    Article  CAS  PubMed  Google Scholar 

  9. Blanco I, Kawatsu R, Harrison K, Leichner P, Augustine S, Baranowska-Kortylewicz J, et al. Antiidiotypic response against murine monoclonal antibodies reactive with tumor-associated antigen TAG-72. J Clin Immunol 1997;17:96–106.

    Article  CAS  PubMed  Google Scholar 

  10. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science 1988;242:423–6.

    Google Scholar 

  11. Colcher D, Milenic D, Roselli M, Raubitschek A, Yarranton G, King D, et al. Characterization and biodistribution of recombinant and recombinant/chimeric constructs of monoclonal antibody B72.3. Cancer Res 1989;49:1738–45.

    CAS  PubMed  Google Scholar 

  12. Colcher D, Goel A, Pavlinkova G, Beresford G, Booth B, Batra SK. Effects of genetic engineering on the pharmacokinetics of antibodies. Q J Nucl Med 1999;43:132–9.

    CAS  PubMed  Google Scholar 

  13. Schott ME, Milenic DE, Yokota T, Whitlow M, Wood JF, Fordyce WA, et al. Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. Cancer Res 1992;52:6413–7.

    CAS  PubMed  Google Scholar 

  14. Schott ME, Schlom J, Siler K, Milenic DE, Eggensperger D, Colcher D, et al. Biodistribution and preclinical radioimmunotherapy studies using radiolanthanide-labeled immunoconjugates. Cancer 1994;73:993–8.

    CAS  PubMed  Google Scholar 

  15. Pavlinkova G, Booth BJ, Batra SK, Colcher D. Radioimmunotherapy of human colon cancer xenografts using a dimeric single-chain Fv antibody construct. Clin Cancer Res 1999;5:2613–9.

    CAS  PubMed  Google Scholar 

  16. Pavlinkova G, Beresford GW, Booth BJ, Batra SK, Colcher D. Pharmacokinetics and biodistribution of engineered single-chain antibody constructs of MAb CC49 in colon carcinoma xenografts. J Nucl Med 1999;40:1536–46.

    CAS  PubMed  Google Scholar 

  17. Pack P, Kujau M, Schroeckh V, Knupfer U, Wenderoth R, Riesenberg D, Pluckthun A. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology (N Y) 1993;11:1271–7.

    CAS  Google Scholar 

  18. Pack P, Muller K, Zahn R, Pluckthun A. Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J Mol Biol 1995;246:28–34.

    Article  CAS  PubMed  Google Scholar 

  19. Power BE Hudson PJ. Synthesis of high avidity antibody fragments (scFv multimers) for cancer imaging. J Immunol Methods 2000;242:193–204.

    Article  CAS  PubMed  Google Scholar 

  20. Power BE, Kortt AA, Hudson PJ. Generation of recombinant multimeric antibody fragments for tumor diagnosis and therapy. Methods Mol Biol 2003;207:335–50.

    CAS  PubMed  Google Scholar 

  21. Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H, et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 2000;6:406–14.

    CAS  PubMed  Google Scholar 

  22. Leichner PK, Akabani G, Colcher D, Harrison KA, Hawkins WG, Eckblade M, et al. Patient-specific dosimetry of indium-111- and yttrium-90-labeled monoclonal antibody CC49. J Nucl Med 1997;38:512–6.

    CAS  PubMed  Google Scholar 

  23. Milenic DE, Roselli M, Mirzadeh S, Pippin CG, Gansow OA, Colcher D, et al. In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Cancer Biother Radiopharm 2001;16:133–46.

    Article  CAS  PubMed  Google Scholar 

  24. Roselli M, Schlom J, Gansow OA, Brechbiel MW, Mirzadeh S, Pippin CG, et al. Comparative biodistribution studies of DTPA-derivative bifunctional chelates for radiometal labeled monoclonal antibodies. Int J Rad Appl Instrum B 1991;18:389–94.

    Article  CAS  PubMed  Google Scholar 

  25. Behr TM, Sharkey RM, Juweid ME, Blumenthal RD, Dunn RM, Griffiths GL, et al. Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 1995;55:3825–34.

    CAS  PubMed  Google Scholar 

  26. Behr TM, Becker WS, Sharkey RM, Juweid ME, Dunn RM, Bair HJ, et al. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 1996;37:829–33.

    CAS  PubMed  Google Scholar 

  27. Schlom J, Siler K, Milenic DE, Eggensperger D, Colcher D, Miller LS, et al. Monoclonal antibody-based therapy of a human tumor xenograft with a 177lutetium-labeled immunoconjugate. Cancer Res 1991;51:2889–96.

    CAS  PubMed  Google Scholar 

  28. Alvarez RD, Partridge EE, Khazaeli MB, Plott G, Austin M, Kilgore L, et al. Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol 1997;65:94–101.

    Article  CAS  PubMed  Google Scholar 

  29. Mulligan T, Carrasquillo JA, Chung Y, Milenic DE, Schlom J, Feuerstein I, et al. Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin Cancer Res 1995;1:1447–54.

    CAS  PubMed  Google Scholar 

  30. Thor A, Ohuchi N, Szpak CA, Johnston WW, Schlom J. Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res 1986;46:3118–24.

    CAS  PubMed  Google Scholar 

  31. Goel A, Beresford GW, Colcher D, Pavlinkova G, Booth BJ, Baranowska-Kortylewicz J, Batra SK. Divalent forms of CC49 single-chain antibody constructs in Pichia pastoris: expression, purification, and characterization. J Biochem (Tokyo) 2000;127:829–36.

    CAS  Google Scholar 

  32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    PubMed  Google Scholar 

  33. Gansow OA, Brechbiel MW, Mirzadeh S, Colcher D, Roselli M. Chelates and antibodies: current methods and new directions. Cancer Treat Res 1990;51:153–71.

    CAS  PubMed  Google Scholar 

  34. Guadagni F, Roselli M, Ferroni P, Amato T, Colcher D, Greiner JW, Schlom J. Clinical evaluation of the new tumor marker TAG-72. Anticancer Res 1991;11:1389–94.

    CAS  PubMed  Google Scholar 

  35. Santos AD, Kashmiri SV, Hand PH, Schlom J, Padlan EA. Generation and characterization of a single gene-encoded single-chain-tetravalent antitumor antibody. Clin Cancer Res 1999;5:s3118–23.

    Google Scholar 

  36. Wu AM, Chen W, Raubitschek A, Williams LE, Neumaier M, Fischer R, et al. Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology 1996;2:21–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Barbara J.M. Booth and Brandon Henley for their technical support. We also thank Dr. Z.P. Kortylewicz, Department of Radiation Oncology, UNMC, for the synthesis and generous supply of ITCB-DTPA, and Ms. Kristi L.W. Berger (Eppley Institute) for editorial assistance. The CC49 scFv construct was a generous gift from Dr. Jeff Schlom of the Laboratory of Tumor Immunology at the National Cancer Institute, NIH, and the Dow Chemical Company. This work was supported by a grant from the United States Department of Energy (DE-FG0295ER62024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder K. Batra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, S.C., Jain, M., Moore, E.D. et al. Pharmacokinetics and biodistribution of 177Lu-labeled multivalent single-chain Fv construct of the pancarcinoma monoclonal antibody CC49. Eur J Nucl Med Mol Imaging 32, 264–273 (2005). https://doi.org/10.1007/s00259-004-1664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1664-0

Keywords

Navigation