Skip to main content
Log in

Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 22 January 2005

Abstract

Purpose

Tetrahydrobiopterin (BH4) is an essential co-factor for the synthesis of nitric oxide (NO), and BH4 deficiency may cause impaired NO synthase (NOS) activity. We studied whether BH4 deficiency contributes to the coronary microcirculatory dysfunction observed in patients with hypercholesterolaemia.

Methods

Myocardial blood flow (MBF; ml min−1 g−1) was measured at rest, during adenosine-induced (140 μg kg−1 min−1 over 7 min) hyperaemia (mainly non-endothelium dependent) and immediately after supine bicycle exercise (endothelium-dependent) stress in ten healthy volunteers and in nine hypercholesterolaemic subjects using 15O-labelled water and positron emission tomography. Measurements were repeated 60 min later, after intravenous infusion of BH4 (10 mg kg−1 body weight over 30 min). Adenosine-induced hyperaemic MBF is considered to represent (near) maximal flow. Flow reserve utilisation was calculated as the ratio of exercise-induced to adenosine-induced hyperaemic MBF and expressed as percent to indicate how much of the maximal (adenosine-induced) hyperaemia can be achieved by bicycle stress.

Results

BH4 increased exercise-induced hyperaemia in controls (2.96±0.58 vs 3.41±0.73 ml min−1 g−1, p<0.05) and hypercholesterolaemic subjects (2.47±0.78 vs 2.70±0.72 ml min−1 g−1, p<0.01) but had no influence on MBF at rest or during adenosine-induced hyperaemia in controls (4.52±1.10 vs 4.85±0.45 ml min−1 g−1, p=NS) or hypercholesterolaemic subjects (4.86±1.18 vs 4.53±0.93 ml min−1 g−1, p=NS). Flow reserve utilisation remained unchanged in controls (70±17% vs 71±19%, p=NS) but increased significantly in hypercholesterolaemic subjects (53±15% vs 66±14%, p<0.05).

Conclusion

BH4 restores flow reserve utilisation of the coronary microcirculation in hypercholesterolaemic subjects, suggesting that BH4 deficiency may contribute to coronary microcirculatory dysfunction in hypercholesterolaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991;83:391–401.

    CAS  PubMed  Google Scholar 

  2. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 1999;99:475–81.

    CAS  PubMed  Google Scholar 

  3. Kaufmann PA, Frielingsdorf J, Mandinov L, Seiler C, Hug R, Hess OM. Reversal of abnormal coronary vasomotion by calcium antagonists in patients with hypercholesterolemia. Circulation 1998;97:1348–54.

    CAS  PubMed  Google Scholar 

  4. Kaufmann PA, Gnecchi-Ruscone T, Schafers KP, Luscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36:103–9.

    Article  CAS  PubMed  Google Scholar 

  5. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 1986;73:865–76.

    CAS  PubMed  Google Scholar 

  6. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001;104:2305–10.

    CAS  PubMed  Google Scholar 

  7. Stroes E, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 1997;99:41–6.

    CAS  PubMed  Google Scholar 

  8. Fukuda Y, Teragawa H, Matsuda K, Yamaguta T, Matsuura H, Chayama K. Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia. Heart 2002;87:264–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med 2003;44:146–54.

    PubMed  Google Scholar 

  10. Wyss CA, Koepfli P, Fretz G, Seebauer M, Schirlo C, Kaufmann PA. Influence of altitude exposure on coronary flow reserve. Circulation 2003;108:1202–7.

    Article  PubMed  Google Scholar 

  11. Walter R, Kaufmann PA, Buck A, et al. Tetrahydrobiopterin increases myocardial blood flow in healthy volunteers: a double-blind, placebo-controlled study. Swiss Med Wkly 2001;131:91–4.

    CAS  PubMed  Google Scholar 

  12. Koepfli P, Hany TF, Wyss CA, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45:537–42.

    PubMed  Google Scholar 

  13. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999;40:1848–56.

    CAS  PubMed  Google Scholar 

  14. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schäfers KP, Lüscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 2000;102:1233–8.

    CAS  PubMed  Google Scholar 

  15. Kaufmann PA, Rimoldi O, Gnecchi-Ruscone T, Bonser RS, Luscher TF, Camici PG. Systemic inhibition of nitric oxide synthase unmasks neural constraint of maximal myocardial blood flow in humans. Circulation 2004 [in press].

  16. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62.

    CAS  PubMed  Google Scholar 

  17. Furchgott RF. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 1984;24:175–97.

    Article  CAS  PubMed  Google Scholar 

  18. Meyers J, Prakash M, Fröhlicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 2002;346:793–801.

    Article  PubMed  Google Scholar 

  19. Tamaki N, Yonekura Y, Senda M, et al. Myocardial positron computed tomography with 13N-ammonia at rest and during exercise. Eur J Nucl Med 1985;11:246–51.

    CAS  PubMed  Google Scholar 

  20. Krivokapich J, Smith GT, Huang SC, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography [see comments]. Circulation 1989;80:1328–37.

    CAS  PubMed  Google Scholar 

  21. Muller P, Czernin J, Choi Y, et al. Effect of exercise supplementation during adenosine infusion on hyperemic blood flow and flow reserve. Am Heart J 1994;128:52–68.

    Article  CAS  PubMed  Google Scholar 

  22. Nagamachi S, Czernin J, Kim AS, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1996;37:1626–31.

    CAS  PubMed  Google Scholar 

  23. Seiler C, Hess OM, Buechi M, Suter TM, Krayenbuehl HP. Influence of serum cholesterol and other coronary risk factors on vasomotion of angiographically normal coronary arteries. Circulation 1993;88:2139–48.

    CAS  PubMed  Google Scholar 

  24. Treasure CB, Vita JA, Cox DA, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 1990;81:772–9.

    CAS  PubMed  Google Scholar 

  25. Kaufmann P, Vassalli G, Utzinger U, Hess OM. Coronary vasomotion during dynamic exercise: influence of intravenous and intracoronary nicardipine. J Am Coll Cardiol 1995;26:624–31.

    Article  CAS  PubMed  Google Scholar 

  26. Kaufmann P, Mandinov L, Frielingsdorf J, Hess OM. Influence of the culprit lesion on clinical symptoms of coronary artery disease, with special emphasis on exercise data. Coron Artery Dis 1998;9:185–90.

    CAS  PubMed  Google Scholar 

  27. Kaufmann P, Mandinov L, Seiler C, Hess OM. Impact of exercise-induced coronary vasomotion on anti-ischemic therapy. Coron Art Dis 2000;11:363–9.

    Article  CAS  Google Scholar 

  28. Frielingsdorf J, Seiler C, Kaufmann P, Vassalli G, Suter T, Hess OM. Normalization of abnormal coronary vasomotion by calcium antagonists in patients with hypertension. Circulation 1996;93:1380–7.

    CAS  PubMed  Google Scholar 

  29. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986;315:1046–51.

    CAS  PubMed  Google Scholar 

  30. Frielingsdorf J, Kaufmann P, Seiler C, Vassalli G, Suter T, Hess OM. Abnormal coronary vasomotion in hypertension: role of coronary artery disease. J Am Coll Cardiol 1996;28:935–41.

    Article  CAS  PubMed  Google Scholar 

  31. Mandinov L, Kaufmann P, Maier W, Hess OM. Flow-dependent vasodilation in the coronary circulation: alterations in diseased states. Semin Interv Cardiol 1998;3:5–12.

    CAS  PubMed  Google Scholar 

  32. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  33. Sun D, Huang A, Mital S, et al. Norepinephrine elicits beta2-receptor-mediated dilation of isolated human coronary arterioles. Circulation 2002;106:550–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kaufmann P, Matter C, Mandinov L, Frielingsdorf J, Seiler C, Hess OM. High level of cholesterol increases coronary vasomotor tone during exercise. Coron Artery Dis 2000;11:459–66.

    Article  CAS  PubMed  Google Scholar 

  35. Goto C, Higashi Y, Kimura M, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 2003;108:530–5.

    Article  PubMed  Google Scholar 

  36. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–6.

    CAS  PubMed  Google Scholar 

  37. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62–9.

    CAS  PubMed  Google Scholar 

  38. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Swiss National Science Foundation (SNSF-Professorship grant No. PP00A-68835 to PAK), the EMDO Stiftung Zurich and the Radiumfonds Zurich. We are grateful to Thomas Berthold, head radiographer, for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp A Kaufmann.

Additional information

The first two authors have contributed equally to the present project.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-004-1759-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyss, C.A., Koepfli, P., Namdar, M. et al. Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia. Eur J Nucl Med Mol Imaging 32, 84–91 (2005). https://doi.org/10.1007/s00259-004-1621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1621-y

Keywords

Navigation