Skip to main content
Log in

Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [123I]FP-CIT.

Methods

[123I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [123I]FP-CIT scans with bone metabolism and perfusion scans obtained with 99mTc-DPD and 99mTc-tetrofosmin, respectively. As these tracers do not pass the blood–brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [123I]FP-CIT scans with images of brain perfusion obtained with 99mTc-HMPAO.

Results

Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V3) of 0.24±0.26 (mean ± SD) and 1.09±0.42, respectively (t test, two-tailed, p<0.0001). Cortical V3 values amounted to 0.05±0.28 (methylphenidate) and 0.3±0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [123I]FP-CIT accumulation.

Conclusion

The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [123I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson’s and Huntington’s disease, may be feasible using SPECT radioligands and small animal imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999;354:2132–3.

    Article  CAS  PubMed  Google Scholar 

  2. Dresel S, Krause J, Krause KH, LaFougere C, Brinkbaumer K, Kung HF, et al. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000;27:1518–24. DOI 10.1007/s002590000330.

    Article  CAS  PubMed  Google Scholar 

  3. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2002;6(Suppl 1):S31–43.

    PubMed  Google Scholar 

  4. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2002;285:107–10.

    Article  CAS  PubMed  Google Scholar 

  5. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 1998;155:1325–31.

    CAS  PubMed  Google Scholar 

  6. Dresel SH, Kung MP, Plossl K, Meegalla SK, Kung HF. Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats. Eur J Nucl Med 1998;25:31–93. DOI 10.1007/s002590050191.

    Article  CAS  PubMed  Google Scholar 

  7. Reneman L, De Bruin K, Lavalaye J, Gunning WB, Booij J. Addition of a 5-HT receptor agonist to methylphenidate potentiates the reduction of [123I]FP-CIT binding to dopamine transporters in rat frontal cortex and hippocampus. Synapse 2001;39:193–200. DOI 10.1002/1098-2396(20010301)39:3<193∷AID-SYN1000>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  8. Wirrwar A, Schramm N, Vosberg H, Muller-Gartner H-W. High resolution SPECT in small animal research. Rev Neurosci 2001;12:187–93.

    Google Scholar 

  9. Nikolaus S, Wirrwar A, Klimke A, Beu M, Forutan F, Vosberg H, et al. State-of-the-art in high-resolution imaging of small animals with PET and SPECT. In: Mohan RM, editor. Research advances in nuclear medicine. Kerala: Global Research Networks; 2002. p. 13–29.

    Google Scholar 

  10. Acton PD, Choi SR, Plossl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:691–8. DOI 10.1007/s00259-002-0776-7.

    Article  CAS  PubMed  Google Scholar 

  11. Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstatter M, et al. Evaluation of striatal dopamine transporter function in rats by in vivo beta-[123I]CIT pinhole SPECT. Neuroimage 2002;17:128–41.

    Article  PubMed  Google Scholar 

  12. Booij J, de Bruin K, Habraken JB, Voorn P. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002;29:1221–4. DOI 10.1007/s00259-002-0845-y.

    Article  CAS  PubMed  Google Scholar 

  13. Schramm N, Wirrwar A, Sonnenberg F, Halling H. Compact high resolution detector for small animal SPECT. IEEE Trans Nucl Sci 2000;47:1163–7.

    Article  Google Scholar 

  14. Seibyl JP, Marek K, Sheff K, Zoghbi S, Baldwin RM, Charney DS, et al. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson’s patients. J Nucl Med 1998;39:1500–8.

    CAS  PubMed  Google Scholar 

  15. Booij J, Hemelaar JTGM, Speelman JD, de Bruin K, Janssen AGM, van Royen EA. One-day protocol for imaging of the nigrostriatal pathway in Parkinson’s disease by [123I]FP-CIT. J Nucl Med 1999;40:753–61.

    CAS  PubMed  Google Scholar 

  16. Laruelle M, van Dyck C, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS, et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J Nucl Med 1994;35:743–54.

    CAS  PubMed  Google Scholar 

  17. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med 2001;42:755–63.

    CAS  PubMed  Google Scholar 

  18. Habraken JB, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BL, Busemann Sokole E. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med 2001;42:1863–9.

    CAS  PubMed  Google Scholar 

  19. Hume SP, Lammertsma AA, Myers R, Rajeswaran S, Bloomfield PM, Ashworth S, et al. The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 1996;67:103–12.

    Article  CAS  PubMed  Google Scholar 

  20. Nikolaus S, Larisch R, Beu M, Vosberg H, Muller-Gartner H-W. Imaging of striatal dopamine D2 receptors with a PET system for small laboratory animals in comparison with storage phosphor autoradiography: a validation study with 18F-(N-methyl)benperidol. J Nucl Med 2001;42:1691–6.

    CAS  PubMed  Google Scholar 

  21. Nikolaus S, Larisch R, Beu M, Hamacher K, Forutan F, Vosberg H, Muller H-W. In vivo measurement of D2 receptor density and affinity for 18F-(3-N-methyl)benperidol in the rat striatum with a PET system for small laboratory animals. J Nucl Med 2003;44:618–24.

    CAS  PubMed  Google Scholar 

  22. Kuge Y, Minematsu K, Hasegawa Y, Yamaguchi T, Mori H, Matsuura H, et al. Positron emission tomography for quantitative determination of glucose metabolism in normal and ischemic brains in rats: an insoluble problem by the Harderian glands. J Cereb Blood Flow Metab 1997;17:116–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Medice GmbH, Iserlohn, Germany. We also thank Dr. Annemarie Treiber, Dr. Petra Hofmann and Dr. Evalotta Sehrig-Lovén from the TVA, Heinrich-Heine University, Düsseldorf, Germany for their advice and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Nikolaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaus, S., Wirrwar, A., Antke, C. et al. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT. Eur J Nucl Med Mol Imaging 32, 308–313 (2005). https://doi.org/10.1007/s00259-004-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1615-9

Keywords

Navigation