Skip to main content
Log in

Is 11C-choline the most appropriate tracer for prostate cancer?

  • Controversies—Against
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Garnick MB, Fair WR. Combating prostate cancer. Sci Am 1998; 279:74–83.

    CAS  PubMed  Google Scholar 

  2. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med 2003; 349:366–381.

    Article  CAS  PubMed  Google Scholar 

  3. Oesterling JE, Martin SK, Bergstralh EJ, Lowe FC. The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 1993; 269:57–60.

    Article  CAS  PubMed  Google Scholar 

  4. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998; 39:990–995.

    CAS  PubMed  Google Scholar 

  5. Kotzerke J, Prang J, Neumaier B, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 2000; 27:1415–1419.

    CAS  PubMed  Google Scholar 

  6. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with11C-choline positron emission tomography. Eur Urol 2002; 42:18–23.

    Article  PubMed  Google Scholar 

  7. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by11C-choline PET. J Nucl Med 2003; 44:331–335.

    PubMed  Google Scholar 

  8. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42:1805–1814.

    CAS  PubMed  Google Scholar 

  9. Hara T, Kosaka N, Kishi H. Development of [18F]fluoroethylcholine ([18F]FECh) for cancer imaging with PET: synthesis, biochemistry and prostate cancer imaging. J Nucl Med 2002; 43:187–199.

    CAS  PubMed  Google Scholar 

  10. Wyss MT, Weber B, Honer M, et al.18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 2004; 31:312–316.

    Article  CAS  PubMed  Google Scholar 

  11. Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 2002; 29:1492–1495.

    Article  PubMed  Google Scholar 

  12. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2002; 29:1380–1384.

    Article  CAS  PubMed  Google Scholar 

  13. Oyama N, Akino H, Kanamaru H, et al.11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43:181–186.

    CAS  PubMed  Google Scholar 

  14. Oyama N, Miller TR, Dehdashti F, et al.11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003; 44:549–555.

    PubMed  Google Scholar 

  15. Fricke E, Machtens S, Hofmann M, et al. Positron emission tomography with11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003; 30:607–611.

    Google Scholar 

  16. Kotzerke J, Volkmer BG, Glatting G, et al. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 2003; 42:25–30.

    PubMed  Google Scholar 

  17. Roivainen A, Forsback S, Gronroos T, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 2000; 27:25–32.

    CAS  PubMed  Google Scholar 

  18. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001; 28:117–122.

    CAS  PubMed  Google Scholar 

  19. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of18F-fluorocholine. J Nucl Med 2002; 43:92–96.

    CAS  PubMed  Google Scholar 

  20. Matthies A, Ezziddin S, Ulrich EM, et al. Imaging of prostate cancer metastases with18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 2004; 31:in press. DOI 10.1007/s00259-003-1437-1.

    Google Scholar 

  21. Oyama N, Kim J, Jones LA, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl Med Biol 2002; 29:783–790.

    Article  PubMed  Google Scholar 

  22. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168:273–280.

    PubMed  Google Scholar 

  23. Picchio M, Landoni C, Messa C, et al. Positive [11C]choline and negative [18F]FDG with positron emission tomography in recurrence of prostate cancer. AJR Am J Roentgenol 2002; 179:482–484.

    CAS  PubMed  Google Scholar 

  24. Picchio M, Messa C, Landoni C, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003; 169:1337–1340.

    PubMed  Google Scholar 

  25. Bruwer G, Heyns CF, Allen FJ. Influence of local tumour stage and grade on reliability of serum prostate-specific antigen in predicting skeletal metastases in patients with adenocarcinoma of the prostate. Eur Urol 1999; 35:223–227.

    Article  CAS  PubMed  Google Scholar 

  26. Schirrmeister H, Glatting G, Hetzel J, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 2001; 42:1800–1804.

    CAS  PubMed  Google Scholar 

  27. Wawroschek F, Vogt H, Weckermann D, Wagner T, Harzmann R. The sentinel lymph node concept in prostate cancer—first results of gamma probe-guided sentinel lymph node identification. Eur Urol 1999; 36:595–600.

    Article  CAS  PubMed  Google Scholar 

  28. Wawroschek F, Vogt H, Wengenmair H, et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int 2003; 70:303–310.

    Article  PubMed  Google Scholar 

  29. Murphy GP, Maguire RT, Rogers B, et al. Comparison of serum PSMA, PSA levels with results of Cytogen-356 ProstaScint scanning in prostatic cancer patients. Prostate 1997; 33:281–285.

    Article  CAS  PubMed  Google Scholar 

  30. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. The ProstaScint Imaging Centers. Urology 2000; 56:988–993.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas CT, Bradshaw PT, Pollock BH, et al. Indium-111-capromab pendetide radioimmunoscintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J Clin Oncol 2003; 21:1715–1721.

    Article  PubMed  Google Scholar 

  32. Nanus DM, Milowsky MI, Kostakoglu L, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 2003; 170:S84–S88; discussion S88–S89.

    Article  PubMed  Google Scholar 

  33. Bander NH, Trabulsi EJ, Kostakoglu L, et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 2003; 170:1717–1721.

    PubMed  Google Scholar 

  34. Coakley FV, Qayyum A, Kurhanewicz J. Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 2003; 170:S69–S75; discussion S75–S76.

    Article  PubMed  Google Scholar 

  35. Hricak H, Schoder H, Pucar D, et al. Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol 2003; 30:616–634.

    PubMed  Google Scholar 

  36. Ito H, Kamoi K, Yokoyama K, Yamada K, Nishimura T. Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br J Radiol 2003; 76:617–624.

    Article  CAS  PubMed  Google Scholar 

  37. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348:2491–2499.

    Article  PubMed  Google Scholar 

  38. Dhingsa R, Qayyum A, Coakley FV, et al. Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 2004; 230:215–220.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kotzerke.

Additional information

The opinions expressed within the Controversies section represent the views of the authors only.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöphel, K., Kotzerke, J. Is 11C-choline the most appropriate tracer for prostate cancer?. Eur J Nucl Med Mol Imaging 31, 756–759 (2004). https://doi.org/10.1007/s00259-004-1543-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1543-8

Keywords

Navigation