Skip to main content

Advertisement

Log in

Breast scintigraphy today: indications and limitations

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Breast carcinoma is the most common neoplasm found among women in the Western world. Mammography (MM) is the most widely used diagnostic imaging method for screening and diagnosing breast cancer. However, despite technical improvements in recent years, MM has known diagnostic limits; consequently not all breast carcinomas are identified on mammograms, especially if the breast is dense, there is a breast prosthesis or the patient has previously undergone radiation, surgery or biopsy. In addition, the mammographic images of benign and malignant lesions can be similar. Therefore, abnormalities detected on MM frequently result in negative biopsies. Scintimammography (SM) is the functional imaging study of the breast using primarily the radiopharmaceuticals 99mTc-sestamibi and 99mTc-tetrofosmin. The main advantage of SM is that its functional basis makes this technique a useful complement to MM. SM resolves some of the main limitations of MM as it is not affected by changes in breast morphology. Several single-site and multi-centre studies have demonstrated that SM has an improved specificity compared with MM, because it is better able to distinguish malignant from benign breast lesions. Interestingly, except in smaller lesions, a higher sensitivity has been recorded for SM than for MM in most of these studies as well. Adjunctive use of SM when MM is equivocal can reduce the number of unnecessary breast biopsies and identify previously unexpected sites of breast cancer. SM appears unaffected by the anatomical changes seen following chemotherapy and radiotherapy, and so this technique can be particularly useful in monitoring the treatment of breast cancer patients, especially when breast-conserving treatment is given. The main limitation to SM has been the sub-optimal resolution of the standard Anger gamma camera, which makes it difficult to detect lesions of less than 10 mm; however, the development of high-resolution breast-dedicated gamma cameras may offer improvements in this respect. This review will look at the evidence for SM and show how it can become part of the clinical care algorithm in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin 2004; 54:8–29.

    PubMed  Google Scholar 

  2. Daniel B. Kopans DB. Mammography screening is saving thousands of lives, but will it survive medical malpractice? Radiology 2004; 230:20–24.

    PubMed  Google Scholar 

  3. Tabar LK, Vitak B, Chen HHT, Yen MF, Duffy SW, Smith RA. Beyond randomized controlled trials: organized mammographic screening substantially reduces breast cancer mortality. Cancer 2001; 91:1724–1731.

    PubMed  Google Scholar 

  4. Berlin L. The missed breast cancer redux: time for educating the public about the limitations of mammography? AJR 2001; 176:1131–1134.

    CAS  Google Scholar 

  5. Birdwell RL, Ikeda DM, O’Shaughnessy KF, Sickles EA. Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection. Radiology 2001; 219:192–202.

    CAS  PubMed  Google Scholar 

  6. Holland R, Jan HC, Hendricks L, Mravunac M. Mammographically occult breast cancers: a pathological and radiologic study. Cancer 1983; 52:1810–1819.

    CAS  Google Scholar 

  7. Kopans D. The positive predictive value of mammography. AJR 1992; 158:521–526.

    CAS  Google Scholar 

  8. Monusturi Z, Herman PG, Carmody DP, et al. Limitations in distinguishing malignant from benign lesions of the breast by systematic review of mammograms. Surg Gynecol Obstet 1991; 173:438–442.

    PubMed  Google Scholar 

  9. Adler DD, Wahl RL. New methods for imaging the breast: techniques, findings and potential. AJR 1995; 164:19–30.

    CAS  Google Scholar 

  10. Jackson VP. The role of US in breast imaging. Radiology 1990; 177:305–311.

    CAS  PubMed  Google Scholar 

  11. Kopans DB. Sonography should not be used for breast cancer screening until its efficacy has been proven scientifically. AJR 2004; 182:489–491.

    Google Scholar 

  12. Buscombe JR, Cwikla JB, Thakrar DS, Hilson AJ. Scintigraphic imaging of breast cancer: a review. Nucl Med Commun 1997; 18:698–709.

    CAS  PubMed  Google Scholar 

  13. Schillaci O, Scopinaro F. Tc-99m sestamibi scintimammography: where is it now? Cancer Biother Radiopharm 1999; 14:417–422.

    CAS  PubMed  Google Scholar 

  14. Schomacker K, Schicha H. Use of myocardial imaging agents for tumour diagnosis—a success story? Eur J Nucl Med 2000; 27:1845–1863.

    Article  PubMed  Google Scholar 

  15. Carvalho PA, Chiu ML, Kronauge JF, et al. Subcellular distribution and analysis of Tc-99m MIBI in isolated perfused rat hearts. J Nucl Med 1992; 33:1516–1521.

    CAS  PubMed  Google Scholar 

  16. Delmon-Mongeon LI, Piwinica-Worms D, Van der Abbeele AD, et al. Uptake of the cation hexakis (2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro. Cancer Res 1990; 50:2198–2202.

    CAS  PubMed  Google Scholar 

  17. Maublant J, Zhang Z, Rapp M, et al. In vitro uptake of technetium-99m-teboroxime in carcinoma cell lines and normal cells: comparison with technetium-99m-sestamibi and thallium-201. J Nucl Med 1993; 34:1949–1952.

    CAS  PubMed  Google Scholar 

  18. Scopinaro F, Schillaci O, Scarpini M, et al. Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 1994; 21:984–987.

    CAS  PubMed  Google Scholar 

  19. Pwnica-Worms D, Chiu ML, Budding M, et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 1993; 53:977–984.

    PubMed  Google Scholar 

  20. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996; 37:1551–1556.

    CAS  PubMed  Google Scholar 

  21. Ballinger JR.99mTc-tetrofosmin for functional imaging of P-glycoprotein modulation in vivo. J Clin Pharmacol 2001; Suppl: 39S–47S.

    Article  CAS  PubMed  Google Scholar 

  22. Van de Wiele C, Rottey S, Goethals I, et al.99mTc sestamibi and 99mTc tetrofosmin scintigraphy for predicting resistance to chemotherapy: a critical review of clinical data. Nucl Med Commun 2003; 24:945–950.

    PubMed  Google Scholar 

  23. Khalkhali I, Mena I, Jouanne E, et al. Prone scintimammography in patients with suspicion of carcinoma of the breast. J Am Coll Surg 1994; 178:491–497.

    CAS  PubMed  Google Scholar 

  24. Liberman M, Sampalis F, Mulder DS, Sampalis JS. Breast cancer diagnosis by scintimammography: a meta-analysis and review of the literature. Breast Cancer Res Treat 2003; 80:115–126.

    Article  CAS  PubMed  Google Scholar 

  25. Sampalis FS, Denis R, Picard D, et al. International prospective evaluation of scintimammography with (99m)technetium sestamibi. Am J Surg 2003; 185:544–549.

    Article  PubMed  Google Scholar 

  26. Buscombe JR, Cwikla JB, Holloway B, Hilson AJ. Prediction of the usefulness of combined mammography and scintimammography in suspected primary breast cancer using ROC curves. J Nucl Med 2001; 42:3-8.

    CAS  PubMed  Google Scholar 

  27. Scopinaro F, Schillaci O, Ussof W, et al. A three center study on the diagnostic accuracy of99mTc-MIBI scintimammography. Anticancer Res 1997; 17:1631–1634.

    CAS  PubMed  Google Scholar 

  28. Waxman A, Nagaraj N, Kovalevsky M, et al. Detection of primary breast malignancy with Tc-99m methoxyisobutylisonitrile in patients with non-palpable primary malignancies: the importance of lesion size [abstract]. J Nucl Med 1995; 36:194P.

    Google Scholar 

  29. Mekhmandarov S, Sandbank J, Coehn M, Lelcuk S, Lubin E. Technetium-99m-MIBI scintimammography in palpable and nonpalpable breast lesions. J Nucl Med 1998; 39:86–91.

    CAS  PubMed  Google Scholar 

  30. Tolmos J, Cutrone JA, Wang B, et al. Scintimammographic analysis of nonpalpable breast lesions previously identified by conventional mammography. J Natl Cancer Inst 1998; 90:846–849.

    Article  CAS  PubMed  Google Scholar 

  31. Khalkhali I, Villanueva-Meyer J, Edell SL, et al. Diagnostic accuracy of99mTc-sestamibi breast imaging: multicenter trial results. J Nucl Med 2000; 41:1973–1979.

    CAS  PubMed  Google Scholar 

  32. Buscombe JR, Cwikla JB, Thakrar DS, Hilson AJ. Uptake of Tc-99m MIBI related to tumour size and type. Anticancer Res 1997; 17:1693–1694.

    CAS  PubMed  Google Scholar 

  33. Obwegeser R, Berghammer P, Rodrigues M, et al. A head-to-head comparison between technetium-99m-tetrofosmin and technetium-99m-MIBI scintigraphy to evaluate suspicious breast lesions. Eur J Nucl Med 1999; 26:1553–1559.

    Article  CAS  PubMed  Google Scholar 

  34. Cwikla JB, Buscombe JR, Hilson AJ. Detection of DCIS using99mTc-MIBI scintimammography in patients with suspected primary breast cancer, comparison with conventional mammography. Nucl Med Rev Cent East Eur 2000; 3:41–45.

    CAS  PubMed  Google Scholar 

  35. Schillaci O, Scopinaro F, Danieli R, et al.99Tcm-sestamibi scintimammography in patients with suspicious breast lesions: comparison of SPET and planar images in the detection of primary tumours and axillary lymph node involvement. Nucl Med Commun 1997; 18:839–845.

    CAS  PubMed  Google Scholar 

  36. Tiling R, Tatsch K, Sommer H, et al. Technetium-99m-sestamibi scintimammography for the detection of breast carcinoma: comparison between planar and SPECT imaging. J Nucl Med 1998; 39:849–856.

    CAS  PubMed  Google Scholar 

  37. Buscombe JR, Cwikla JB, Thakrar DS, Parbhoo SP, Hilson AJ. Prone SPET scintimammography. Nucl Med Commun 1999; 20:237–245.

    CAS  PubMed  Google Scholar 

  38. Waxman AD. The role of99mTc methoxyisobutylisonitrile in imaging breast cancer. Semin Nucl Med 1997; 27:40–54.

    CAS  PubMed  Google Scholar 

  39. Spanu A, Schillaci O, Meloni GB, et al. The usefulness of99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas. Int J Oncol 2002; 21:831–840.

    PubMed  Google Scholar 

  40. Garin E, Devillers A, Girault S, et al. Scintimammography: better detection of small-sized lesions with tomoscintigraphic than planar images, a phantom study. Nucl Med Commun 2001; 22:1045–1054.

    Article  PubMed  Google Scholar 

  41. Mankoff DA, Dunnwald LK, Kinahan P. Are we ready for dedicated breast imaging approaches? J Nucl Med 2003; 44:594–595.

    PubMed  Google Scholar 

  42. Brem RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C. High-resolution scintimammography: a pilot study. J Nucl Med 2002; 43:909–915.

    PubMed  Google Scholar 

  43. Gupta P, Waxman A, Nguyen K, et al. Correlation of Tc-99m sestamibi uptake with histopathologic characteristics in patients with breast diseases [abstract]. J Nucl Med 1996; 37:250P.

    Google Scholar 

  44. Khalkhali I, Vargas HI. The role of nuclear medicine in breast cancer detection: functional breast imaging. Radiol Clin North Am 2001; 39:1053–1068.

    CAS  PubMed  Google Scholar 

  45. Horne T, Pappo I, Cohenpour M, Mindlin L, Orda R.99Tcm-MIBI scintimammography for the detection of breast malignancies: the contribution of the count ratio to specificity. Nucl Med Commun 1999; 20:511–516.

    CAS  PubMed  Google Scholar 

  46. Buscombe JR, Kolasinska AD Cwikla JB Hilson,A.J.W. Does combining scintimammography and mammography in the primary breast cancers than mammography alone in the under-and over 50s? [abstract]. J Nucl Med 2002; 43:75P.

    Google Scholar 

  47. Prats E, Aisa F, Abos MD, et al. Mammography and 99mTc-MIBI scintimammography in suspected breast cancer. J Nucl Med 1999; 40:296–301.

    Google Scholar 

  48. Polan RL, Klein BD, Richman RH. Scintimammography in patients with minimal mammographic or clinical findings. Radiographics 2001; 21:641–653.

    CAS  PubMed  Google Scholar 

  49. American College of Radiology. Breast imaging reporting and data system (BI-RADS), 2nd edn. Reston, Va: American College of Radiology, 1995.

  50. Thurfjell E. Breast density and the risk of breast cancer. N Engl J Med 2002; 347:866.

    Article  PubMed  Google Scholar 

  51. Schillaci O, Scopinaro F, Danieli R, et al. Scintimammography with technetium-99m tetrofosmin in suspected breast cancer. Anticancer Res 1997; 17:1623–1626.

    CAS  PubMed  Google Scholar 

  52. Schillaci O, Di Luzio E, Porfiri LM, et al. Role of Tc-99m sestamibi scintimammography in patients with indeterminate mammography due to dense breasts [abstract]. Eur J Nucl Med 1999; 26:986.

    Article  Google Scholar 

  53. Cutrone JA, Khalkhali I, Yospur LS, et al. Tc-99m sestamibi scintimammography for the evaluation of breast masses in patients with radiographically dense breasts. Breast J 1999; 5:383–388.

    Article  PubMed  Google Scholar 

  54. Khalkhali I, Baum JK, Villanueva-Meyer J, et al.99mTc sestamibi breast imaging for the examination of patients with dense and fatty breasts: multicenter study. Radiology 2002; 222:149–155.

    PubMed  Google Scholar 

  55. Tiling R, Khalkhali I, Sommer H, et al. Role of technetium-99m sestamibi scintimammography and contrast-enhanced magnetic resonance imaging for the evaluation of indeterminate mammograms. Eur J Nucl Med 1997; 24:1221–1229.

    Article  CAS  PubMed  Google Scholar 

  56. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 2001; 220:13–30.

    CAS  PubMed  Google Scholar 

  57. McMahon KE, Osborne DR, Davidson AL. Role of breast magnetic resonance imaging in difficult diagnostic situations. Med J Aust 2001; 175:494–497.

    CAS  PubMed  Google Scholar 

  58. Marini C, Cilotti A, Traino AC, et al. Tc 99m-sestamibi scintimammography in the differentiation of benign and malignant breast microcalcifications. Breast 2001; 10:306–312.

    Article  CAS  PubMed  Google Scholar 

  59. Cwikla JB, Buscombe JR, Holloway B, et al. Can scintimammography with99mTc-MIBI identify multifocal and multicentric primary breast cancer? Nucl Med Commun 2001; 22:1287–1293.

    Article  CAS  PubMed  Google Scholar 

  60. Vargas HI, Agbunag RV, Kalinowski A, et al. The clinical utility of Tc-99m sestamibi scintimammography in detecting multicentric breast cancer. Am Surg 2001; 67:1204–1208.

    CAS  PubMed  Google Scholar 

  61. Tillman GF, Orel SG, Schnall MD, Schultz DJ, Tan JE, Solin LJ. Effect of breast magnetic resonance imaging on the clinical management of women with early-stage breast carcinoma. J Clin Oncol 2002; 20:3413–3423.

    Article  PubMed  Google Scholar 

  62. Cwikla JB, Kolasinska A, Buscombe JR, Hilson AJ. Tc-99m MIBI in suspected recurrent breast cancer. Cancer Biother Radiopharm 2000; 15:367–372.

    CAS  PubMed  Google Scholar 

  63. Yildiz A, Garipagaoglu M, Gungor F, Boz A, Dalmaz G. The role of technetium-99m methoxyisobutyl isonitrile scintigraphy in suspected recurrent breast cancer. Cancer Biother Radiopharm 2001; 16:163–169.

    Article  CAS  PubMed  Google Scholar 

  64. Spanu A, Farris A, Schillaci O, et al. The usefulness of99mTc tetrofosmin scintigraphy in patients with breast cancer recurrences. Nucl Med Commun 2003; 24:145–154.

    Article  CAS  PubMed  Google Scholar 

  65. Cwikla JB,Buscombe JR,Barlow RV, et al. The effect of chemotherapy on the uptake of technetium-99m sestamibi in breast cancer. Eur J Nucl Med 1997; 24:1175–1178.

    Article  CAS  PubMed  Google Scholar 

  66. Takamura Y, Miyoshi Y, Taguchi T, Noguchi S. Prediction of chemotherapeutic response by technetium 99m-MIBI scintigraphy in breast carcinoma patients. Cancer 2001; 92:232–239.

    Article  CAS  PubMed  Google Scholar 

  67. Maini CL, Tofani A, Sciuto R, et al. Technetium-99m-MIBI scintigraphy in the assessment of neoadjuvant chemotherapy in breast carcinoma. J Nucl Med 1997; 38:1546–1551.

    CAS  PubMed  Google Scholar 

  68. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Drucker MJ, Livingston RB. Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using [technetium 99m]-sestamibi scintimammography. Cancer 1999; 85:2410–2423.

    Article  CAS  PubMed  Google Scholar 

  69. Mezi S, Primi F, Capoccetti F, Scopinaro F, Modesti M, Schillaci O. In vivo detection of resistance to anthracycline based neoadjuvant chemotherapy in locally advanced and inflammatory breast cancer with technetium-99m sestamibi scintimammography. Int J Oncol 2003; 22:1233–1240.

    CAS  PubMed  Google Scholar 

  70. Allen MW, Hendi P, Schwimmer J, Basset L, Gambhir SS. Decision analysis for the cost-effectiveness of sestamibi scintimammography in minimizing unnecessary biopsies. Q J Nucl Med 2000; 44:168–185.

    CAS  PubMed  Google Scholar 

  71. Luce BR, Simpson K. Methods of cost-effectiveness analysis: areas of consensus and debate. Clin Ther 1995; 17:109–125.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Schillaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schillaci, O., Buscombe, J.R. Breast scintigraphy today: indications and limitations. Eur J Nucl Med Mol Imaging 31 (Suppl 1), S35–S45 (2004). https://doi.org/10.1007/s00259-004-1525-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1525-x

Keywords

Navigation