Skip to main content

Advertisement

Log in

Scatter modelling and compensation in emission tomography

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

In nuclear medicine, clinical assessment and diagnosis are generally based on qualitative assessment of the distribution pattern of radiotracers used. In addition, emission tomography (SPECT and PET) imaging methods offer the possibility of quantitative assessment of tracer concentration in vivo to quantify relevant parameters in clinical and research settings, provided accurate correction for the physical degrading factors (e.g. attenuation, scatter, partial volume effects) hampering their quantitative accuracy are applied. This review addresses the problem of Compton scattering as the dominant photon interaction phenomenon in emission tomography and discusses its impact on both the quality of reconstructed clinical images and the accuracy of quantitative analysis. After a general introduction, there is a section in which scatter modelling in uniform and non-uniform media is described in detail. This is followed by an overview of scatter compensation techniques and evaluation strategies used for the assessment of these correction methods. In the process, emphasis is placed on the clinical impact of image degradation due to Compton scattering. This, in turn, stresses the need for implementation of more accurate algorithms in software supplied by scanner manufacturers, although the choice of a general-purpose algorithm or algorithms may be difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moore SC, Kijewski MF, Muller SP, Rybicki F, Zimmerman RE. Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections. Med Phys 2001; 28:278–287.

    Article  CAS  PubMed  Google Scholar 

  2. Gagnon D, Laperriere L, Pouliott N, deVries DJ, Moore SC. Monte Carlo analysis of camera-induced spectral contamination for different primary energies. Phys Med Biol 1992; 37:1725–1739.

    Article  Google Scholar 

  3. Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 1994; 21:675–694.

    CAS  PubMed  Google Scholar 

  4. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Object and detector scatter-function dependence on energy and position in high resolution PET. IEEE Trans Nucl Sci 1995; 42:1162–1167.

    Article  Google Scholar 

  5. Bentourkia M, Lecomte R. Energy dependence of nonstationary scatter subtraction-restoration in high resolution PET. IEEE Trans Med Imaging 1999; 18:66–73.

    Article  CAS  PubMed  Google Scholar 

  6. Evans RD. The atomic nucleus. New York: McGraw-Hill, 1955.

  7. Carlsson GA, Carlsson CA, Berggren KF, Ribberfors R. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Med Phys 1982; 9:868–879.

    Article  CAS  PubMed  Google Scholar 

  8. Hua C-H. Compton imaging system development and performance assessment [PhD thesis]. University of Michigan, USA; 2000.

  9. Zaidi H, Koral KF. Scatter correction strategies in emission tomography. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004.

  10. de Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imaging 1990; 9:430–438.

    Article  Google Scholar 

  11. de Vries DJ, King MA, Moore SC. Characterization of spectral and spatial distributions of penetration, scatter and lead X-rays in Ga-67 SPECT. IEEE Nuclear Science Symposium, 1998. Conference Record. 1998; 3:1707–1710.

  12. Dewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in131I imaging. J Nucl Med 2000; 41:123–130.

    CAS  PubMed  Google Scholar 

  13. Moore S, de Vries D, Penney B, Müller S, Kijewski M. Design of a collimator for imaging In-111. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:183–193.

  14. King MA, Tsui BM, Pan TS, Glick SJ, Soares EJ. Attenuation compensation for cardiac single-photon emission computed tomographic imaging. Part 2. Attenuation compensation algorithms. J Nucl Cardiol 1996; 3:55–64.

    CAS  PubMed  Google Scholar 

  15. Zaidi H. Scatter modelling and correction strategies in fully 3-D PET. Nucl Med Commun 2001; 22:1181–1184.

    CAS  PubMed  Google Scholar 

  16. Schoder H, Erdi YE, Larson SM, Yeung HW. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003; 30:1419–1437.

    Article  PubMed  Google Scholar 

  17. Adam LE, Karp JS, Brix G. Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations. Phys Med Biol 1999; 44:2879–2895.

    Article  CAS  PubMed  Google Scholar 

  18. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25:893–900.

    CAS  PubMed  Google Scholar 

  19. Pan TS, King MA, Luo DS, Dahlberg ST, Villegas BJ. Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi. J Nucl Cardiol 1997; 4:42–51.

    CAS  PubMed  Google Scholar 

  20. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 1986; 27:1577–1585.

    PubMed  Google Scholar 

  21. Buvat I, Lazaro D, Breton V. Fully 3D Monte Carlo reconstruction in SPECT: proof of concept and is that worthwhile? Conference proceedings of the VIIth International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 29 June-4 July 2003, Saint-Malo, France. Available on CD-ROM.

  22. Ljungberg M. The Monte Carlo method applied in other areas of SPECT imaging. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:207–220.

  23. Kojima A, Matsumoto M, Takahashi M, Uehara S. Effect of energy resolution on scatter fraction in scintigraphic imaging: Monte Carlo study. Med Phys 1993; 20:1107–1113.

    Article  CAS  PubMed  Google Scholar 

  24. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 1984; 29:1217–1230.

    Article  CAS  PubMed  Google Scholar 

  25. Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990; 31:1560–1567.

    CAS  PubMed  Google Scholar 

  26. Barney JS, Rogers JG, Harrop R, Hoverath H. Object shape dependent scatter simulations for PET. IEEE Trans Nucl Sci 1991; 38:719–725.

    Article  Google Scholar 

  27. Frey EC, Tsui BMW. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 1990; 37:1308–1315.

    Article  CAS  Google Scholar 

  28. Zaidi H. Reconstruction-based estimation of the scatter component in positron emission tomography. Ann Nucl Med Sci 2001; 14:161–171.

    Google Scholar 

  29. Zaidi H, Scheurer AH, Morel C. An object-oriented Monte Carlo simulator for 3D positron tomographs. Comput Methods Prog Biomed 1999; 58:133–145.

    Article  CAS  Google Scholar 

  30. Riauka TA, Hooper HR, Gortel ZW. Experimental and numerical investigation of the 3D SPECT photon detection kernel for non-uniform attenuating media. Phys Med Biol 1996; 41:1167–1189.

    Article  CAS  PubMed  Google Scholar 

  31. Jonsson C, Larsson SA. A spatially varying Compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section. Phys Med Biol 2001; 46:1767–1783.

    CAS  PubMed  Google Scholar 

  32. Watson CC, Newport D, Casey ME, deKemp A, Beanlands RS, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997; 44:90–97.

    Google Scholar 

  33. Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans Nucl Sci 1995; 42:1181–1188.

    Google Scholar 

  34. Holdsworth CH, Levin CS, Janecek M, Dahlbom M, Hoffman EJ. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci 2002; 49:83–89.

    Article  Google Scholar 

  35. Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002; 21:867–877.

    Article  PubMed  Google Scholar 

  36. Frey EC, Tsui BMW. A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 1993; 40:1107–1116.

    Article  CAS  Google Scholar 

  37. Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997; 42:1619–1632.

    CAS  PubMed  Google Scholar 

  38. Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci 1994; 41:1585–1593.

    Article  Google Scholar 

  39. Beekman FJ, den Harder JM, Viergever MA, van Rijk PP. SPECT scatter modelling in non-uniform attenuating objects. Phys Med Biol 1997; 42:1133–1142.

    CAS  PubMed  Google Scholar 

  40. Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998; 43:857–873.

    Google Scholar 

  41. Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. IEEE Trans Nucl Sci 1998; 45:3202–3214.

    Article  CAS  Google Scholar 

  42. Frey EC, Tsui BMW. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. IEEE Nuclear Science Symposium, 1996. Conference Record 2:1082–1086.

    Google Scholar 

  43. Beekman FJ, de Jong HW, Slijpen ET. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 1999; 44:N183–N192.

    CAS  PubMed  Google Scholar 

  44. de Jong HW, Beekman FJ. Rapid SPECT simulation of downscatter in non-uniform media. Phys Med Biol 2001; 46:621–635.

    PubMed  Google Scholar 

  45. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BM, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med 1995; 36:1489–1513.

    CAS  PubMed  Google Scholar 

  46. Zaidi H. Quantitative SPECT: recent developments in detector response, attenuation and scatter correction techniques. Phys Med 1996; 12:101–117.

    Google Scholar 

  47. Koral KF. Monte Carlo in SPECT scatter correction. In: Ljungberg M, Strand S-E, King MA, eds. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing; 1998:165–181.

  48. Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990; 17:1011–1022.

    Article  CAS  PubMed  Google Scholar 

  49. King MA, Coleman M, Penney BC, Glick SJ. Activity quantitation in SPECT: a study of prereconstruction Metz filtering and use of the scatter degradation factor. Med Phys 1991; 18:184–189.

    Article  CAS  PubMed  Google Scholar 

  50. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994; 35:360–367.

    CAS  PubMed  Google Scholar 

  51. Narita Y, Eberl S, Iida H, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996; 41:2481–2496.

    Article  CAS  PubMed  Google Scholar 

  52. Narita Y, Iida H, Eberl S, Nakamura T. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for201Tl cardiac SPECT. IEEE Trans Nucl Sci 1997; 44:2465–2472.

    Article  CAS  Google Scholar 

  53. Kim KM, Varrone A, Watabe H, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003; 44:512–519.

    PubMed  Google Scholar 

  54. Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003; 48:N323–N328.

    Article  PubMed  Google Scholar 

  55. King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992; 33:605–612.

    CAS  PubMed  Google Scholar 

  56. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single-photon emission CT. IEEE Trans Med Imaging 1991; 10:408–412.

    Article  Google Scholar 

  57. Koral KF, Wang XQ, Rogers WL, Clinthorne NH, Wang XH. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988; 29:195–202.

    CAS  PubMed  Google Scholar 

  58. Wang X, Koral KF. A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 1992; 11:351–360.

    Article  Google Scholar 

  59. El Fakhri G, Kijewski MF, Maksud P, Moore SC. The effects of compensation for scatter, lead x-rays, and high-energy contamination on tumor detectability and activity estimation in Ga-67 imaging. IEEE Trans Nucl Sci 2003; 50:439–445.

    Article  Google Scholar 

  60. Ogawa K, Nishizaki N. Accurate scatter compensation using neural networks in radionuclide imaging. IEEE Trans Nucl Sci 1993; 40:1020–1025.

    Article  CAS  Google Scholar 

  61. Maksud P, Fertil B, Rica C, El Fakhri G, Aurengo A. Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. J Nucl Med 1998; 39:735–745.

    CAS  PubMed  Google Scholar 

  62. El Fakhri G, Moore SC, Maksud P. A new scatter compensation method for Ga-67 Imaging using artificial neural networks. IEEE Trans Nucl Sci 2001; 48:799–804.

    Article  Google Scholar 

  63. Hutton B, Nuyts J, Zaidi H. Iterative image reconstruction methods. In: Zaidi H, ed. Quantitative analysis in nuclear medicine imaging. New York: Kluwer Academic/Plenum Publishers, 2004.

  64. Hutton BF, Baccarne V. Efficient scatter modelling for incorporation in maximum likelihood reconstruction. Eur J Nucl Med 1998; 25:1658–1665.

    Article  CAS  PubMed  Google Scholar 

  65. Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA. Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1998; 25:8–18.

    Article  CAS  PubMed  Google Scholar 

  66. Narayanan MV, Pretorius PH, Dahlberg ST, et al. Evaluation of scatter compensation strategies and their impact on human detection performance Tc-99m myocardial perfusion imaging. IEEE Trans Nucl Sci 2003; 50:1522–1527.

    Article  Google Scholar 

  67. Koral KF, Dewaraja Y, Li J, et al. Update on hybrid conjugate-view SPECT tumor dosimetry and response in131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 2003; 44:457–464.

    CAS  PubMed  Google Scholar 

  68. Iida H, Narita Y, Kado H, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998; 39:181–189.

    CAS  PubMed  Google Scholar 

  69. Links JM. Scattered photons as “good counts gone bad:” are they reformable or should they be permanently removed from society? J Nucl Med 1995; 36:130–132.

    CAS  PubMed  Google Scholar 

  70. Msaki P, Bentourkia M, Lecomte R. Scatter degradation and correction models for high-resolution PET. J Nucl Med 1996; 37:2047–2049.

    CAS  PubMed  Google Scholar 

  71. Bailey DL. Quantitative procedures in 3D PET. In: Bendriem B, Townsend DW, eds. The theory and practice of 3D PET. Dordrecht, The Netherlands: Kluwer Academic; 1998:55–109.

  72. Meikle SR, Badawi RD. Quantitative techniques in positron emission tomography. In: Valk PE, Bailey DL, Townsend DW, et al., eds. Positron emission tomography: basic science and clinical practice. London: Springer; 2003:115–146.

  73. Grootoonk S, Spinks TJ, Sashin D, Spyrou NM, Jones T. Correction for scatter in 3D brain PET using a dual energy window method. Phys Med Biol 1996; 41:2757–2774.

    Article  CAS  PubMed  Google Scholar 

  74. Bendriem B, Trebossen R, Frouin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. Proc IEEE Med Imag Conf, San Francisco, CA, 3:1779–1783.

  75. Shao L, Freifelder R, Karp JS. Triple energy window scatter correction technique in PET. IEEE Trans Med Imaging 1994; 4:641–648.

    Google Scholar 

  76. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Nonstationary scatter subtraction-restoration in high-resolution PET. J Nucl Med 1996; 37:2040–2046.

    CAS  PubMed  Google Scholar 

  77. Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994; 39:411–424.

    Article  Google Scholar 

  78. Lercher MJ, Wienhard K. Scatter correction in 3D PET. IEEE Trans Med Imaging 1994; 13:649–657.

    Article  Google Scholar 

  79. Cherry S, Huang SC. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci 1995; 42:1174–1179.

    Google Scholar 

  80. Links JL, Leal JP, Mueller-Gartner HW, Wagner HN. Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med 1992; 19:925–932.

    CAS  PubMed  Google Scholar 

  81. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996; 41:153–176.

    Article  CAS  PubMed  Google Scholar 

  82. Wollenweber SD. Parameterization of a model-based 3-D PET scatter correction. IEEE Trans Nucl Sci 2002; 49:722–727.

    Article  Google Scholar 

  83. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 2000; 47:1587–1594.

    Google Scholar 

  84. Zaidi H, Montandon M-L, Slosman DO. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 2003; 30:937–948.

    Article  PubMed  Google Scholar 

  85. Ferreira NC, Trebossen R, Lartizien C, Brulon V, Merceron P, Bendriem B. A hybrid scatter correction for 3D PET based on an estimation of the distribution of unscattered coincidences: implementation on the ECAT EXACT HR+. Phys Med Biol 2002; 47:1555–1571.

    Article  CAS  PubMed  Google Scholar 

  86. Zaidi H. Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 2000; 27:1813–1826.

    CAS  PubMed  Google Scholar 

  87. Daube-Witherspoon ME, Carson RE, Yan YC, Yap TK. Scatter correction in maximum-likelihood reconstruction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference, 1992. Conference Record 2:945–947.

    Google Scholar 

  88. Werling A, Bublitz O, Doll J, Adam LE, Brix G. Fast implementation of the single scatter simulation algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 2002; 47:2947–2960.

    Article  PubMed  Google Scholar 

  89. Pan TS, Yagle AE. Numerical study of multigrid implementations of some iterative image reconstruction algorithms. IEEE Trans Med Imaging 1991; 10:572–588.

    Article  Google Scholar 

  90. Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994; 35:143–151.

    CAS  PubMed  Google Scholar 

  91. Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995; 36:1476–1488.

    CAS  PubMed  Google Scholar 

  92. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000; 41:1400–1408.

    PubMed  Google Scholar 

  93. Townsend D, Price J, Mintun M, et al. Scatter correction for brain receptor quantitation in 3D PET. In: Myers R CVJ, Bailey DL, Jones T, eds. Quantification of brain function using PET. San Diego, CA: Academic Press; 1996:76–81.

  94. Sossi V, Oakes TR, Ruth TJ. A phantom study evaluating the quantitative aspect of 3D PET imaging of the brain. Phys Med Biol 1998; 43:2615–2630.

    Google Scholar 

  95. Barrett HH, Denny JL, Wagner RF, Myers KJ. Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J Opt Soc Am A 1995; 12:834–852.

    CAS  PubMed  Google Scholar 

  96. King MA, deVries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 1997; 44:1140–1145.

    Article  Google Scholar 

  97. Ljungberg M, Strand S-E, King MA. Monte Carlo calculations in nuclear medicine: applications in diagnostic imaging. Bristol: Institute of Physics Publishing, 1998.

  98. Zaidi H, Sgouros G. Therapeutic applications of Monte Carlo calculations in nuclear medicine. Bristol: Institute of Physics Publishing, 2002.

  99. Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys 1999; 26:574–608.

    Article  CAS  PubMed  Google Scholar 

  100. Kim KM, Watabe H, Shidahara M, Onishi Y, Yonekura Y, Iida H. Impact of scatter correction in the kinetic analysis of a D2 receptror ligand SPECT study. IEEE Medical Imaging Conference, San Diego; 3:1509–1512.

  101. Fujita M, Varrone A, Kim KM, et al. Measurement of striatal and extrastriatal dopamine D2 receptors using [123I]-epidepride SPET. Eur J Nucl Med Mol Imaging 2004; 31:in press. DOI 10.1007/s00259-003-1431-7.

    Google Scholar 

  102. de Vries DJ, King MA, Soares EJ, Tsui BM, Metz CE. Effects of scatter subtraction on detection and quantitation in hepatic SPECT. J Nucl Med 1999; 40:1011–1023.

    PubMed  Google Scholar 

  103. Sankaran S, Frey EC, Gilland KL, Tsui BM. Optimum compensation method and filter cutoff frequency in myocardial SPECT: a human observer study. J Nucl Med 2002; 43:432–438.

    PubMed  Google Scholar 

  104. Montandon M-L, Slosman DO, Zaidi H. Assessment of the impact of model-based scatter correction on18F-[FDG] 3D brain PET in healthy subjects using statistical parametric mapping. Neuroimage 2003; 20:1848–1856.

    Article  PubMed  Google Scholar 

  105. Zaidi H, Hasegawa BH. Determination of the attenuation map in emission tomography. J Nucl Med 2003; 44:291–315.

    PubMed  Google Scholar 

  106. Wegmann K, Adam L-E, Livieratos L, Zaers J, Bailey DL, Brix G. Investigation of the scatter contribution in single photon transmission measurements by means of Monte Carlo simulations. IEEE Trans Nucl Sci 1999; 46:1184–1190.

    Article  Google Scholar 

  107. Celler A, Axen D, Togane D, El-Khatib J. Investigation of scatter in SPECT transmission studies. IEEE Trans Nucl Sci 2000; 47:1251–1257.

    Article  Google Scholar 

  108. Ohnesorge B, Flohr T, Klingenbeck-Regn K. Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur Radiol 1999; 9:563–569.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the co-authors (H.Z.) acknowledges the support of grant SNSF 3152A0-102143, awarded by the Swiss National Science Foundation. The other (K.F.K.) acknowledges the support of grant R01 CA87955, awarded by the National Cancer Institute, United States Department of Health and Human Services. The contents are solely the responsibility of the authors and do not necessarily represent the official view of the sponsoring agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, H., Koral, K.F. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 31, 761–782 (2004). https://doi.org/10.1007/s00259-004-1495-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1495-z

Keywords

Navigation