Skip to main content

Advertisement

Log in

Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) imaging reporter genes, such as HSV1-tk and D2 receptor genes, make it possible to visualise gene expression non-invasively and repetitively in vivo. However, these systems require the synthesis of complicated substrates and the availability of expensive PET equipment. Expression of the sodium/iodide symporter (NIS) gene can be easily monitored with radioiodines and technetium-99m using a gamma camera. To evaluate the possibility of using NIS as an imaging reporter gene, we compared its characteristics with those of the conventional HSV1-tk gene. The CM cell line was made by transfecting the HSV1-tk gene into CT-26 (mouse colon carcinoma cell line). The CTN and CMN cell lines were then made by transfecting the NIS gene into CT-26 and CM. We measured the uptake of iodine-125 iodovinyldeoxyuridine ([125I]IVDU) and 125I to evaluate the expression of the HSV1-tk and NIS genes, respectively. Each cell line was injected into four flank sites in Balb/c mice. The biodistribution study was performed after intravenously injecting [125I]IVDU and 131I, and 131I scintigraphy was performed for the evaluation of NIS expression. In vitro studies indicated that CTN and CMN had 40- to 79-fold and 150- to 256-fold higher uptake of 125I than CT-26 and CM, respectively. Furthermore, CM and CMN showed 57- to 69-fold higher uptake of [125I]IVDU than CT-26 and CTN. NIS gene expression and 125I accumulation were found to be directly correlated (R 2=0.923), as were HSV1-tk gene expression and [125I]IVDU accumulation (R 2=0.956). Calculated signal per unit NIS and HSV1-tk mRNA expression was 23,240±3,755 cpm and 34,039±5,346 cpm, respectively. In vivo study indicated that CTN and CMN had 2.3- and 5.8-fold higher uptake of 131I than CT-26 and CM, and 1.8- and 3.5-fold higher uptake of [125I]IVDU than CT-26 and CTN. Scintigraphy using 131I easily visualised CTN and CMN tumours. In conclusion, the NIS gene may be viewed as an imaging reporter gene with comparable performance to the HSV1-tk gene for monitoring target gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haberkorn U, Altmann A, Eisenhut M. Functional genomics and proteomics–the role of nuclear medicine. Eur J Nucl Med Mol Imaging 2002; 29:115–132.

    Article  CAS  PubMed  Google Scholar 

  2. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219:316–333.

    PubMed  Google Scholar 

  3. Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN, Mountz JD, Curiel DT, Mountz JM. Imaging and tissue biodistribution of99mTc-labeled adenovirus knob (serotype 5). Gene Ther 1998; 5:798–808.

    Article  CAS  PubMed  Google Scholar 

  4. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 2001; 98:9300–9305.

    Article  CAS  PubMed  Google Scholar 

  5. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS. Ex vivo cell labeling with64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 2002; 99:3030–3035.

    Article  CAS  PubMed  Google Scholar 

  6. Ting AY, Kain KH, Klemke RL, Tsien RY. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 2001; 98:15003–15008.

    Article  CAS  PubMed  Google Scholar 

  7. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, Fitzpatrick JM, Raghunath PN, Tomaszewski JE, Kelly C, Steinmetz N, Green A, Tait JF, Leppo J, Blankenberg FG, Jain D, Strauss HW. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 2001; 7:1347–1352.

    Article  CAS  PubMed  Google Scholar 

  8. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7:743–748.

    Article  PubMed  Google Scholar 

  9. Ray P, Pimenta H, Paulmurugan R, Berger F, Phelps ME, Iyer M, Gambhir SS. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc Natl Acad Sci U S A 2002; 99:3105–3110.

    Article  CAS  PubMed  Google Scholar 

  10. Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 2002; 29:98–114.

    Article  PubMed  Google Scholar 

  11. MacLaren DC, Toyokuni T, Cherry SR, Barrio JR, Phelps ME, Herschman HR, Gambhir SS. PET imaging of transgene expression. Biol Psychiatry 2000; 48:337–348.

    CAS  PubMed  Google Scholar 

  12. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 1999; 96:2333–2338.

    CAS  PubMed  Google Scholar 

  13. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002; 2:683–693.

    Article  CAS  PubMed  Google Scholar 

  14. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, Bauer E, Parrish C, MacLaren DC, Borghei AR, Green LA, Sharfstein S, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39:2003–2011.

    CAS  PubMed  Google Scholar 

  15. Haberkorn U, Altmann A, Morr I, Knopf KW, Germann C, Haeckel R, Oberdorfer F, van Kaick G. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med 1997; 38:287–294.

    CAS  PubMed  Google Scholar 

  16. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, Wu L, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999; 6:785–791.

    CAS  PubMed  Google Scholar 

  17. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002; 13:1723–1735.

    Article  CAS  PubMed  Google Scholar 

  18. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002; 43:1188–1200.

    CAS  PubMed  Google Scholar 

  19. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379:458–460.

    CAS  PubMed  Google Scholar 

  20. Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, Jhiang SM. Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 1996; 226:339–345.

    CAS  PubMed  Google Scholar 

  21. Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 2001; 8:1524–1531.

    Article  CAS  PubMed  Google Scholar 

  22. Min JJ, Chung JK, Lee YJ, Shin JH, Yeo JS, Jeong JM, Lee DS, Bom HS, Lee MC. In vitro and in vivo characteristics of a human colon cancer cell line, SNU-C5 N, expressing sodium-iodide symporter. Nucl Med Biol 2002; 29:537–545.

    Article  CAS  PubMed  Google Scholar 

  23. Cho JY, Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, Hinkle G, Pozderac R, Kloos R, Nagaraja HN, Barth RF, Jhiang SM. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 2002; 9:1139–1145.

    Article  CAS  PubMed  Google Scholar 

  24. Petrich T, Helmeke HJ, Meyer GJ, Knapp WH, Potter E. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2002; 29:842–854.

    Article  CAS  PubMed  Google Scholar 

  25. Kosugi S, Sasaki N, Hai N, Sugawa H, Aoki N, Shigemasa C, Mori T, Yoshida A. Establishment and characterization of a Chinese hamster ovary cell line, CHO-4 J, stably expressing a number of Na+/I− symporters. Biochem Biophys Res Commun 1996; 227:94–101.

    CAS  PubMed  Google Scholar 

  26. Weiss SJ, Philp NJ, Grollman EF. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 1984; 114:1090–1098.

    CAS  PubMed  Google Scholar 

  27. Morin KW, Atrazheva ED, Knaus EE, Wiebe LI. Synthesis and cellular uptake of 2’-substituted analogues of (E)-5-(2-[125I]iodovinyl)-2’-deoxyuridine in tumor cells transduced with the herpes simplex type-1 thymidine kinase gene. Evaluation as probes for monitoring gene therapy. J Med Chem 1997; 40:2184–2190.

    CAS  PubMed  Google Scholar 

  28. Samuel J, Gill MJ, Iwashina T, Tovell DR, Tyrrell DL, Knaus EE, Wiebe LI. Pharmacokinetics and metabolism of E-5-(2-[131I]iodovinyl)-2’-deoxyuridine in dogs. Antimicrob Agents Chemother 1986; 29:320–324.

    CAS  PubMed  Google Scholar 

  29. Yaghoubi SS, Wu L, Liang Q, Toyokuni T, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 2001; 8:1072–1080.

    Article  CAS  PubMed  Google Scholar 

  30. Tjuvajev JG, Chen SH, Joshi A, Joshi R, Guo ZS, Balatoni J, Ballon D, Koutcher J, Finn R, Woo SL, Blasberg RG. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999; 59:5186–5193.

    CAS  PubMed  Google Scholar 

  31. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, Cherry SR, Phelps ME, Herschman HR, Gambhir SS. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000; 6:933–937.

    CAS  PubMed  Google Scholar 

  32. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001; 3:480–488.

    Article  CAS  PubMed  Google Scholar 

  33. Ray P, Wu AM, Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 2003; 63:1160–1165.

    CAS  PubMed  Google Scholar 

  34. Loimas S, Wahlfors J, Janne J. Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 1998; 24:614–618.

    CAS  PubMed  Google Scholar 

  35. Baron U, Freundlieb S, Gossen M, Bujard H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 1995; 23:3605–3606.

    CAS  PubMed  Google Scholar 

  36. Bramson J, Hitt M, Gallichan WS, Rosenthal KL, Gauldie J, Graham FL. Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine: in vitro and in vivo production of biologically active interleukin-12. Hum Gene Ther 1996; 7:333–342.

    CAS  PubMed  Google Scholar 

  37. Tjuvajev JG, Joshi A, Callegari J, Lindsley L, Joshi R, Balatoni J, Finn R, Larson SM, Sadelain M, Blasberg RG. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1999; 1:315–320.

    CAS  PubMed  Google Scholar 

  38. Morin KW, Knaus EE, Wiebe LI, Xia H, McEwan AJ. Reporter gene imaging: effects of ganciclovir treatment on nucleoside uptake, hypoxia and perfusion in a murine gene therapy tumour model that expresses herpes simplex type-1 thymidine kinase. Nucl Med Commun 2000; 21:129–137.

    Article  CAS  PubMed  Google Scholar 

  39. Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 1999; 26:481–490.

    CAS  PubMed  Google Scholar 

  40. Allport JR, Weissleder R. In vivo imaging of gene and cell therapies. Exp Hematol 2001; 29:1237–1246.

    Article  CAS  PubMed  Google Scholar 

  41. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, Phelps ME, Larson SM, Balatoni J, Finn R, Sadelain M, Tjuvajev J, Blasberg R. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000; 2:118–138.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a research grant from the Cancer Research Institute, Seoul National University (2002). J.H. Shin, J.H. Kang, Y.J. Lee and K.I. Kim were supported by the BK21 project for Medicine, Dentistry and Pharmacy (2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Key Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, J.H., Chung, JK., Kang, J.H. et al. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk . Eur J Nucl Med Mol Imaging 31, 425–432 (2004). https://doi.org/10.1007/s00259-003-1394-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1394-8

Keywords

Navigation