Skip to main content

Advertisement

Log in

Requirements for clinical PET: comparisons within Europe

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The aim was to assess the requirements for a positron emission tomography (PET) cancer imaging service. The UK was used as an example to create a mathematical model for calculating the number of dedicated PET scanners and cyclotron/radiochemistry production facilities required to support the demand for PET studies in lung cancer. This was then extended to all oncological indications for PET and comparison was made with present infrastructure in the UK and Europe. A clinical algorithm for the use of PET in lung cancer management was created and built into a comprehensive computer model with variable parameters. From lung cancer incidences, data reported in the literature and local data, the proportion of patients following each algorithmic path was determined and used to calculate the number of PET scans and hence PET scanners required for lung cancer, and all cancer indications. Substituting lung cancer incidences, the PET infrastructure required for each European country was assessed. From this analysis, 29,886 PET scans per year for lung cancer investigation (provision of 12 scanners) and 121,589 PET scans (2,026.5 per million population) for all indications [provision of 49 scanners (0.82 per million population)] are required in the UK; at present there are seven scanners, and thus 42 new scanners are required. Results reported here demonstrate considerable lack of investment in PET in Europe, with marked variation; Belgium has the most sufficient infrastructure (197.80% of requirements), and excluding France, which is soon to see extensive development, the UK has the least sufficient infrastructure (14.39% of requirements). Considerable investment is required so that cancer management can gain the clinical and cost-effective benefit of this functional imaging technique, which has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quinn M, Babb P, Kirby EA, Brock A. Registrations of cancer diagnosed in 1994–1997, England and Wales. Health Statistics Quarterly 07 Autumn, 2000.

  2. ISD Online: http://www.show.scot.nhs.uk/isd/cancer/facts_figures/types/lung.htm.

  3. Cancer incidence data 1993–96 and mortality data 1993–98. Northern Ireland Cancer Registry, 2000.

  4. Maisey MN, Wahl RL, Barrington SF. Atlas of clinical positron emission tomography. London: Arnold; 1999: Chap 5, pp 75–103.

  5. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin 1999; 49:33–64.

    PubMed  Google Scholar 

  6. Quinn M, Babb P, Brock A, Kirby L, Jones J. Studies on medical and population subjects No. 66: Cancer trends in England and Wales 1950–1999. National Statistics Publication. The Stationery Office, 2001: Chap 12, pp 84–89.

  7. Kadvi MA, Dussek JE. Survival and prognosis following resection of primary non small cell bronchogenic carcinoma. Eur J Cardiothoracic Surg 1991; 5:132–136.

    Google Scholar 

  8. Hoffman PC, Mauer AM, Vokes EE. Lung cancer. Lancet 2000; 355:479–485.

    CAS  PubMed  Google Scholar 

  9. Cummings SR, Lillington GA, Richard RJ. Estimating the probability of malignancy in solitary pulmonary nodules—a Bayesian approach. Am Rev Respir Dis 1986; 134:449–452.

    CAS  PubMed  Google Scholar 

  10. Ost D, Fein A. Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med 2000; 162:782–787.

    CAS  PubMed  Google Scholar 

  11. Holin SM, Dwork RE, Glaser S, Rickli AE, Stocklen JB. Solitary pulmonary nodules found in a community-wide chest roentgenographic survey. Radiology 1959; 79:427–439.

    CAS  Google Scholar 

  12. Comstock GW, Vaughan RH, Montgomery G. Outcome of solitary pulmonary nodules discovered in an x-ray screening program. N Engl J Med 1956; 254:1018–1022.

    PubMed  Google Scholar 

  13. Good CA, Wilson TW. The solitary circumscribed pulmonary nodule: study of seven hundred and five cases encountered roentgenographically in a period of three and one-half years. J Am Med Assoc 1958; 166:210–215.

    CAS  PubMed  Google Scholar 

  14. Zerhouni EA, Stitik FP, Siegelman SS. CT of the pulmonary nodule: a cooperative study. Radiology 1986; 160:319–327.

    CAS  PubMed  Google Scholar 

  15. Cummings SR, Lillington GA, Richard RJ. Managing solitary pulmonary nodules. Am Rev Respir Dis 1986; 134:453–460.

    CAS  PubMed  Google Scholar 

  16. Lillington GA. Pulmonary nodules: solitary and multiple. Clin Chest Med 1982; 3:361–367.

    CAS  PubMed  Google Scholar 

  17. Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET. J Nucl Med 1996; 37:943–948.

    CAS  PubMed  Google Scholar 

  18. Ginsberg R, Hill I, Eagan R. Modern 30-day operative mortality for surgical resection in lung cancer. J Thorac Cardiovasc Surg 1983; 86:654–658.

    PubMed  Google Scholar 

  19. Warburg O, Posener K, Negelein E. The metabolism of the carcinoma cell. In: Warburg O, ed. The metabolism of tumors. New York: Richard R. Smith; 1931:129–169.

  20. Weber G. Enzymology of cancer cells. N Engl J Med 1977; 296:486–492.

    CAS  PubMed  Google Scholar 

  21. Golshani S. Insulin, growth factors, and cancer cell energy metabolism: an hypothesis on oncogene action. Biochem Med Metab Biol 1992; 47:108–115.

    CAS  PubMed  Google Scholar 

  22. Merrall NW, Plevin R, Gould GW. Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 1993; 5:667–675.

    CAS  PubMed  Google Scholar 

  23. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990; 170:223–230.

    CAS  PubMed  Google Scholar 

  24. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993; 72:2979–2985.

    CAS  PubMed  Google Scholar 

  25. Yankelevitz DF, Henschke CI. Does 2-year stability imply that pulmonary nodules are benign? Am J Radiol 1997; 168:325–328.

    CAS  Google Scholar 

  26. Warburg O, Wind F, Negleis E. On the metabolism of tumors in the body. In: Warburg O, ed. The metabolism of tumors. London: Constable; 1930:254–270.

  27. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987; 235:1492–1495.

    CAS  PubMed  Google Scholar 

  28. Hiraki Y, deHerreros AG, Birnbaum MJ. Transformation stimulates glucose transporter gene expression in the absence of protein kinase C. Proc Natl Acad Sci USA 1989; 86:8252–8256.

    CAS  PubMed  Google Scholar 

  29. Sazon DA, Santiago SM, Soo Hoo GW, et al. Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med 1996; 153:417–421.

    CAS  PubMed  Google Scholar 

  30. Shawver LK, Olson SA, White MK, Weber MJ. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol Cell Biol 1987; 7:2112–2118.

    CAS  PubMed  Google Scholar 

  31. White MK, Weber MJ. Transformation by the src oncogene alters glucose transport into rat and chicken cells by different mechanisms. Mol Cell Biol 1988; 8:138–144.

    CAS  PubMed  Google Scholar 

  32. White MK, Weber MJ. The src oncogene can regulate a human glucose transporter expressed in chicken embryo fibroblasts. Mol Cell Biol 1990; 10:1301–1306.

    CAS  PubMed  Google Scholar 

  33. Brown RS, Leung JY, Kison PV, et al. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999; 40:556–565.

    CAS  PubMed  Google Scholar 

  34. Smith TA. FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 1998; 19:97–105.

    CAS  PubMed  Google Scholar 

  35. Haberkorn U, Ziegler SI, Oberdorfer F, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol 1994; 21:827–834.

    CAS  PubMed  Google Scholar 

  36. Gallagher BM, Fowler JS, Gutterson NI. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-d-glucose. J Nucl Med 1978; 19:1154–1161.

    Google Scholar 

  37. Ahmed N, Berridge MV. Regulation of glucose transport by interleukin-3 in growth factor-dependent and oncogene transformed bone marrow-derived cell lines. Leukoc Res 1997; 21:609–618.

    Article  CAS  Google Scholar 

  38. Smith TA. Facilitative glucose transporter expression in human cancer tissue. Br J Biomed Sci 1999; 56:285–292.

    CAS  PubMed  Google Scholar 

  39. Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 1997; 29:339–343.

    CAS  PubMed  Google Scholar 

  40. Fukuda H, Matsuzawa T, Abe Y. Experimental study for lung cancer diagnosis with positron-labelled fluorinated glucose analogous. Eur J Nucl Med 1982; 7:294–297.

    CAS  PubMed  Google Scholar 

  41. Dahlbom M, Hoffman EJ, Hoh CK, et al. Evaluation of a positron emission tomography (PET) scanner for whole body imaging. J Nucl Med 1992; 33:1191–1199.

    CAS  PubMed  Google Scholar 

  42. Marom EM, McAdams HP, Erasmus JJ, et al. Staging non-small cell lung cancer with whole-body PET. Radiology 1999; 212:803–809.

    CAS  PubMed  Google Scholar 

  43. Gambhir SS, Shepherd JE, Shah BD, et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol 1998; 16:2113–2125.

    CAS  PubMed  Google Scholar 

  44. Gould M, Sanders G, Barnett P, et al. Cost-effectiveness of positron emission tomography for diagnosis of solitary pulmonary nodules [abstract]. Med Decis Making 2001; 21:528.

    Google Scholar 

  45. Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001; 285:914–924.

    CAS  PubMed  Google Scholar 

  46. Scott WJ, Shepherd J, Gambhir SS. Cost-effectiveness of FDG-PET for staging non-small cell lung cancer: a decision analysis. Ann Thorac Surg 1998; 66:1876–1885.

    Article  CAS  PubMed  Google Scholar 

  47. Gambhir SS, Hoh CK, Phelps ME, Madar I, Maddahi J. Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small cell carcinoma. J Nucl Med 1996; 37:1428–1436.

    CAS  PubMed  Google Scholar 

  48. Dietlein M, Weber K, Gandjour A, et al. Cost-effectiveness of FDG-PET for the management of potentially operable non-small cell lung cancer: priority for a PET-based strategy after nodal-negative CT results. Eur J Nucl Med 2000; 27:1598–1609.

    Article  CAS  PubMed  Google Scholar 

  49. Lewis P, Griffin S, Marsden P, et al. Whole-body18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet 1994; 344:1265–1266.

    CAS  PubMed  Google Scholar 

  50. Scott WJ, Schwabe JL, Gupta NC, et al. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose. The Members of the PET-Lung Tumor Study Group. Ann Thorac Surg 1994; 58:698–703.

    CAS  PubMed  Google Scholar 

  51. Fischer B, Mortensen J, Hojgaard L. Positron emission tomography in the diagnosis and staging of lung cancer: a systematic quantitiative review. Lancet Oncol 2001; 2:659–666.

    Article  CAS  PubMed  Google Scholar 

  52. Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 1998; 16:2142–2149.

    CAS  PubMed  Google Scholar 

  53. Poncelet AJ, Lonneux M, Coche E, et al. PET-FDG scan enhances but does not replace preoperative surgical staging in non-small cell lung carcinoma. Eur J Cardiothorac Surg 2001; 20:468–474.

    Article  CAS  PubMed  Google Scholar 

  54. Scott WJ, Gobar LS, Terry JD, et al. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 1996; 111:642–648.

    CAS  PubMed  Google Scholar 

  55. Wahl RL, Quint LE, Greenough RL, et al. Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 1994; 191:371–377.

    CAS  PubMed  Google Scholar 

  56. Valk PE, Pounds TR, Hopkins DM, et al. Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 1995; 60:1573–1581.

    CAS  PubMed  Google Scholar 

  57. Bury T, Paulus P, Dowlati A, et al. Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Respir J 1996; 9:2560–2564.

    CAS  PubMed  Google Scholar 

  58. Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000; 343:254–261.

    PubMed  Google Scholar 

  59. Guhlmann A, Storck M, Kotzerke J, et al. Lymph node staging in non-small cell lung cancer: evaluation by [18F]FDG positron emission tomography (PET). Thorax 1997; 52:438–441.

    CAS  PubMed  Google Scholar 

  60. Chin R Jr, Ward R, Keyes JW, et al. Mediastinal staging of non-small-cell lung cancer with positron emission tomography. Am J Respir Crit Care 1995; 152:2090–2096.

    PubMed  Google Scholar 

  61. Patz EF Jr, Lowe VJ, Goodman PC, et al. Thoracic nodal staging with PET imaging with 18FDG in patients with bronchogenic carcinoma. Chest 1995; 108:1617–1621.

    PubMed  Google Scholar 

  62. Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 1995; 36:788–793.

    CAS  PubMed  Google Scholar 

  63. Kubota K, Yamada S, Ishiwata K, et al. Positron emission tomography for treatment evaluation and recurrence detection compared with CT in long-term follow-up cases of lung cancer. Clin Nucl Med 1992; 17:877–881.

    CAS  PubMed  Google Scholar 

  64. Patz EF, Jr., Lowe VJ, Hoffman JM, et al. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-d-glucose. Radiology 1994; 191:379–382.

    PubMed  Google Scholar 

  65. Hebert ME, Lowe VJ, Hoffman JM, et al. Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 1996; 19:416–421.

    Google Scholar 

  66. Frank A, Lefkowitz D, Jaeger S, et al. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 1995; 32:1495–1512.

    Article  CAS  PubMed  Google Scholar 

  67. Bury T, Corhay JL, Duysinx B, et al. Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 1999; 14:1376–1380.

    Article  CAS  PubMed  Google Scholar 

  68. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, et al. The impact of (18)F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000; 55:317–324.

    Article  CAS  PubMed  Google Scholar 

  69. Kiffer JD, Berlangieri SU, Scott AM, et al. The contribution of18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 1998; 19:167–177.

    Article  CAS  PubMed  Google Scholar 

  70. Nestle U, Walter K, Schmidt S, et al.18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999; 44:593–597.

    Article  CAS  PubMed  Google Scholar 

  71. Abe Y, Matsuzawa T, Fujiwara T, et al. Clinical assessment of therapeutic effects on cancer using18F-2-fluoro-2-deoxy-d-glucose and positron emission tomography: preliminary study of lung cancer. Int J Radiat Oncol Biol Phys 1990; 19:1005–1010.

    CAS  PubMed  Google Scholar 

  72. Dhital K, Saunders CA, Seed PT, et al. [18F]Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 2000; 18:425–428.

    Google Scholar 

  73. Ahuja V, Coleman RE, Herndon J, et al. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998; 83:918–924.

    CAS  PubMed  Google Scholar 

  74. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on18F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 1999; 17:3201–3206.

    CAS  PubMed  Google Scholar 

  75. Laking G, Price P. 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) and the staging of early lung cancer. Thorax 2001; 56 (Suppl II):ii38–ii44.

    Google Scholar 

  76. Royal College of Physicians of London. Positron emission tomography: a strategy for provision in the UK. Report of the Intercollegiate Standing Committee on Nuclear Medicine: position paper on a strategy for the provision of PET. Royal College of Physicians of London, 2003:www.rcplondon.ac.uk/pubs.

  77. Pauker SG, Kassirer JP. Decision analysis. In: Bailar JC III, Mosteller F, eds. Medical uses of statistics. Boston, MA: NEJM Books; 1992:159–180.

  78. Weinstein M, Fineberg H. Clinical decision analysis. Philadelphia: Saunders, 1980.

  79. Ferlay J, Bray F, Pisani P, Parkin DM. Globocan 2000: cancer incidence, mortality and prevalence worldwide, version 1.0.IARC CancerBase No 5. Lyon: IARC Press, 2001.

  80. Hain SF, Curran KM, Beggs AD, Fogelman I, O’Doherty MJ, Maisey MN. FDG-PET as a “metabolic biopsy” tool in thoracic lesions with indeterminate biopsy. Eur J Nucl Med 2001; 28:1336–1340.

    PubMed  Google Scholar 

  81. Shon IH, O’Doherty MJ, Maisey MN. Positron emission tomography in lung cancer. Semin Nucl Med 2002; 32:240–271.

    Article  PubMed  Google Scholar 

  82. Dietlein M, Weber K, Gandjour A, et al. Cost-effectiveness of FDG-PET for the management of solitary pulmonary nodules: a decision analysis based on cost reimbursement in Germany. Eur J Nucl Med 2000; 27:1441–1456.

    Article  CAS  PubMed  Google Scholar 

  83. Shaffer K. Role of radiology for imaging and biopsy of solitary pulmonary nodules. Chest 1999; 116:519S–522S.

    Article  CAS  PubMed  Google Scholar 

  84. Caskey CI, Templeton PA, Zerhouni EA. Current evaluation of the solitary pulmonary nodule. Radiol Clin North Am 1990; 28:511–520.

    CAS  PubMed  Google Scholar 

  85. Winning AJ, McIvor J, Seed WA, et al. Interpretation of negative results in fine needle aspiration of discrete pulmonary lesions. Thorax 1986; 41:875–879.

    CAS  PubMed  Google Scholar 

  86. Gross B, Glazer G, Orringer M, et al. Bronchogenic carcinoma metastatic to normal-sized lymph nodes: frequency and significance. Radiology 1988; 166:71–74.

    CAS  PubMed  Google Scholar 

  87. McLoud TC, Bourgouin PM, Greenberg RW, et al. Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 1992; 182:319–323.

    CAS  PubMed  Google Scholar 

  88. White P, Adams H, Crane M, et al. Preoperative staging of carcinoma of the bronchus: can computed tomographic scanning reliably identify stage tumors? Thorax 1994; 49:951–957.

    CAS  PubMed  Google Scholar 

  89. Primack S, Lee K, Logan P. Bronchogenic carcinoma: utility of CT in the evaluation of patients with suspected lesions. Radiology 1994; 193:795–800.

    CAS  PubMed  Google Scholar 

  90. Dillemans B, Deneffe G, Verschakelen J, et al. Value of computed tomography and mediastinoscopy in preoperative evaluation of mediastinal nodes in non-small cell lung cancer. Eur J Cardiothorac Surg 1994; 8:37–42.

    Google Scholar 

  91. Webb W, Gatsonis C, Zerhouni E, et al. CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology 1991; 178:705–713.

    CAS  PubMed  Google Scholar 

  92. Seely JM, Mayo JR, Miller RR, et al. T1 lung cancer:prevalence of mediastinal nodal metastasis and diagnostic accuracy of CT. Radiology 1993; 186:129–132.

    CAS  PubMed  Google Scholar 

  93. Yokoi K, Okuyama A, Mori K. Mediastinal lymph node metastasis from lung cancer: evaluation with201Tl-SPECT; comparison with CT. Radiology 1994; 192:813–817.

    CAS  PubMed  Google Scholar 

  94. O’Doherty MJ. Clinical PET in the UK: dangers of missing an opportunity. Nucl Med Commun 2001; 22:737–739.

    Article  CAS  PubMed  Google Scholar 

  95. O’Doherty MJ, Marsden PK. Being equipped for clinical PET. Lancet 2000; 356:1701–1703.

    Article  CAS  Google Scholar 

  96. Kosuda S, Ichihara K, Watanabe M, Kobayashi H, Kusano S. Decision-tree sensitivity analysis for cost-effectiveness of chest 2-fluoro-2-d-[18F] fluorodeoxyglucose positron emission tomography in patients with pulmonary nodules (non-small cell lung carcinoma) in Japan. Chest 2000; 117:346–353.

    Article  CAS  PubMed  Google Scholar 

  97. Laroche C, Wells F, Coulden R, Stewart S, Goddard M, Lowry E, Price A, Gilligan D. Improving resection rate in lung cancer. Thorax 1998; 53:445–449.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PPP Foundation is acknowledged for their support for the academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bedford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedford, M., Maisey, M.N. Requirements for clinical PET: comparisons within Europe. Eur J Nucl Med Mol Imaging 31, 208–221 (2004). https://doi.org/10.1007/s00259-003-1351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1351-6

Keywords

Navigation