Skip to main content

Advertisement

Log in

The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This study was performed to prospectively investigate the impact of image fusion in resolving discrepant findings between fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) or X-ray computed tomography (CT) in patients with gynaecological cancers. Discrepant findings were defined as lesions where the difference between the FDG-PET and MRI/CT images was assigned a value of at least 2 on a 5-point probability scale. The FDG-PET and MRI/CT images were taken within 1 month of each other. Image fusion between FDG-PET and CT was performed by automatic registration between the two images. During an 18-month period, 34 malignant lesions and seven benign lesions from 32 patients who had undergone either surgical excision or a CT-guided histopathological investigation were included for analysis. Among these cases, image fusion was most frequently required to determine the nature and/or the extent of abdominal and pelvic lesions (28/41, 68%), especially as regards peritoneal seeding (8/41, 20%). Image fusion was most useful in providing better localisation for biopsy (16/41, 39%) and in discriminating between lesions with pathological versus physiological FDG uptake (12/41, 29%). Image fusion changed the original diagnosis based on MRI/CT alone in 9/41 lesions (22%), and the original diagnosis based on FDG-PET alone in 5/41 lesions (12%). It led to alteration of treatment planning (surgery or radiotherapy) in seven of the 32 patients (22%). In patients with gynaecological cancers, the technique of image fusion is helpful in discriminating the nature of FDG-avid lesions, in effectively localising lesions for CT-guided biopsy and in providing better surgical or radiotherapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A–C.
Fig. 3A–C.
Fig. 4A–C.

Similar content being viewed by others

References

  1. Suyama S, Nakaguchi T, Kawakami K, et al. Computed tomography analysis of causes of local failure in radiotherapy for cervical carcinoma. Cancer 1998; 83:1956–1965.

    Article  CAS  PubMed  Google Scholar 

  2. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 2001; 218:776–782.

    CAS  PubMed  Google Scholar 

  3. Vorgias G, Katsoulis M, Argyrou K, et al. Preoperative imaging of primary intra abdominal gynaecological malignancies. Diagnostic accuracy of CT-scan and MRI. A Greek cohort study. Eur J Gynecol Oncol 2002; 23:139–144.

    CAS  Google Scholar 

  4. Arita T, Kuramitsu T, Kawamura M, et al. Bronchogenic carcinoma: incidence of metastases to normal sized lymph node. Thorax 1995; 50:1267–1269.

    CAS  PubMed  Google Scholar 

  5. Jabour BA, Choi Y, Hoh C, et al. Extracranial head and neck: PET imaging with 2-[F-18]fluoro-2-deoxy-glucose and MR imaging correlation. Radiology 1993; 186:27–35.

    CAS  PubMed  Google Scholar 

  6. Braams JW, Pruim J, Freling NJM, et al. Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 1995; 36:211–216.

    CAS  PubMed  Google Scholar 

  7. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-d-glucose. J Comput Assist Tomogr 1993; 17:582–589.

    CAS  PubMed  Google Scholar 

  8. Kubota K. From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 2001; 15:471–486.

    CAS  PubMed  Google Scholar 

  9. Hubner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using [18F]deoxyglucose (FDG). Gynecol Oncol 1993; 51:197–204.

    CAS  PubMed  Google Scholar 

  10. Sugawara Y, Eisbruch A, Kosuda S, Recker BE, Kison PV, Wahl RL. Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 1999; 40:1125–1131.

    CAS  PubMed  Google Scholar 

  11. Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul-Karim FW, Miraldi F. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol 1999; 17:41–45.

    CAS  PubMed  Google Scholar 

  12. Umesaki N, Tanaka T, Miyama M, et al. Early diagnosis and evaluation of therapy in postoperative recurrent cervical cancers by positron emission tomography. Oncol Rep 2000; 7:53–56.

    CAS  PubMed  Google Scholar 

  13. Umesaki N, Tanaka T, Miyama M, et al. The role of18F-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG-PET) in the diagnosis of recurrence and lymph node metastasis of cervical cancer. Oncol Rep 2000; 7:1261–1264.

    CAS  PubMed  Google Scholar 

  14. Sun SS, Chen TC, Yen RF, Shen YY, Changlai SP, Kao A. Value of whole body18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res 2001; 21:2957–2961.

    CAS  PubMed  Google Scholar 

  15. Kerr IG, Manji MF, Powe J, Bakheet S, Al Suhaibani H, Subhi J. Positron emission tomography for the evaluation of metastases in patients with carcinoma of the cervix: a retrospective review. Gynecol Oncol 2001; 81:477–480.

    Article  CAS  PubMed  Google Scholar 

  16. Nakahara T, Fujii H, Ide M, et al. F-18 FDG uptake in endometrial cancer. Clin Nucl Med 2001; 26:82–83.

    CAS  PubMed  Google Scholar 

  17. Yen RF, Sun SS, Shen YY, Changlai SP, Kao A. Whole body positron emission tomography with18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res 2001; 21:3691–3694.

    CAS  PubMed  Google Scholar 

  18. Zimny M, Siggelkow W, Schroder W, et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in the diagnosis of recurrent ovarian cancer. Gynecol Oncol 2001; 83:310–315.

    CAS  PubMed  Google Scholar 

  19. Lentz SS. Endometrial carcinoma diagnosed by positron emission tomography: a case report. Gynecol Oncol 2002; 86:223–224.

    Article  PubMed  Google Scholar 

  20. Ryu SY, Kim MH, Choi SC, Choi CW, Lee KH. Detection of early recurrence with18F-FDG PET in patients with cervical cancer. J Nucl Med 2003; 44:347–352.

    PubMed  Google Scholar 

  21. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993; 34:1190–1197.

    CAS  PubMed  Google Scholar 

  22. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. Staging of mediastinal non-small cell lung cancer with FDG PET, CT and fusion images: preliminary prospective evaluation. Radiology 1994; 191:371–377.

    CAS  PubMed  Google Scholar 

  23. Pietrzyk U, Herholz K, Schuster A, von Stockhausen HM, Lucht H, Heiss WD. Clinical applications of registration and fusion of multimodality brain images from PET, SPECT, CT, and MRI. Eur J Radiol 1996; 21:174–182.

    CAS  PubMed  Google Scholar 

  24. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? The Leuven Lung Cancer Group. Eur J Nucl Med 1998; 25:1495–1501.

    Article  CAS  PubMed  Google Scholar 

  25. Magnani P, Carretta A, Rizzo G, et al. FDG/PET and spiral CT image fusion for mediastinal lymph node assessment of non-small cell lung cancer patients. J Cardiovasc Surg 1999; 40:741–748.

    CAS  Google Scholar 

  26. Zimny M, Buell U.18FDG-positron emission tomography in pancreatic cancer. Ann Oncol 1999;10 Suppl 4: 28–32.

    Google Scholar 

  27. Schaffler GJ, Groell R, Schoellnast H, et al. Digital image fusion of CT and PET data sets—clinical value in abdominal/pelvic malignancies. J Comput Assist Tomogr 2000; 24:644–647.

    Article  CAS  PubMed  Google Scholar 

  28. Warburg O, Wind F, Neglers E. On the metabolism of tumors in the body. In: Warburg O. Metabolism of tumors. London: Constable; 1930:254–270.

  29. Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose [18F]: nontoxic tracer for rapid tumor detection. J Nucl Med 1980; 21:670–675.

    CAS  PubMed  Google Scholar 

  30. Canis M, Rabischong B, Botchorishvili R, et al. Risk of spread of ovarian cancer after laparoscopic surgery. Curr Opin Obstet Gynecol 2001; 13:9–14.

    Article  CAS  PubMed  Google Scholar 

  31. Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med 1998; 28:352–358.

    CAS  PubMed  Google Scholar 

  32. Bakheet SM, Saleem M, Powe J, Amro AA, Larsson SG, Mahassin Z. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection. Clin Nucl Med 2000; 25:273–278.

    Article  PubMed  Google Scholar 

  33. Roberts PF, Follette DM, Haag DV, et al. Factors associated with false-positive staging of lung cancer by positron emission tomography. Ann Thorac Surg 2000; 70:1154–1160.

    Article  CAS  PubMed  Google Scholar 

  34. Kubota R, Yamada S, Kubota R, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33:1972–1980.

    CAS  PubMed  Google Scholar 

  35. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-flurodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 1995; 36:1301–1306.

    CAS  PubMed  Google Scholar 

  36. Hain SF, Curran KM, Beggs AD, et al. FDG-PET as a "metabolic biopsy" tool in thoracic lesions with indeterminate biopsy. Eur J Nucl Med 2001; 28:1336–1340.

    PubMed  Google Scholar 

  37. Beggs AD, Hain SF, Curran KM, O'Doherty MJ. FDG-PET as a "metabolic biopsy" tool in non-lung lesions with indeterminate biopsy. Eur J Nucl Med Mol Imaging 2002; 29:542–546.

    Article  CAS  PubMed  Google Scholar 

  38. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41:1269–1379.

    Google Scholar 

  39. Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000; 25:905–910.

    CAS  PubMed  Google Scholar 

  40. Ell PJ, von Schulthess GK. PET/CT: a new road map. Eur J Nucl Med Mol Imaging 2002; 29:719–720.

    Article  PubMed  Google Scholar 

  41. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 2002; 225:575–581.

    PubMed  Google Scholar 

  42. Goerres GW, Kamel E, Seifert B, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med 2002; 43:1469–1475.

    PubMed  Google Scholar 

  43. Zimmer LA, McCook B, Meltzer C, et al. Combined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003; 128:174–184.

    Article  Google Scholar 

  44. Bockisch A, Brandt-Mainz K, Gorges R, Muller S, Stattaus J, Antoch G. Diagnosis in medullary thyroid cancer with [18F]FDG-PET and improvement using a combined PET/CT scanner. Acta Med Austriaca 2003; 30:22–25.

    Article  CAS  PubMed  Google Scholar 

  45. Kaim AH, Burger C, Ganter CC, et al. PET-CT-guided percutaneous puncture of an infected cyst in autosomal dominant polycystic kidney disease: case report. Radiology 2001; 221:818–821.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (CTRP 020) from Chang Gung Memorial Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan-Fu Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, CC., Tsai, CS., Ng, KK. et al. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers. Eur J Nucl Med Mol Imaging 30, 1674–1683 (2003). https://doi.org/10.1007/s00259-003-1300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1300-4

Keywords

Navigation