Skip to main content

Advertisement

Log in

From PET detectors to PET scanners

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This review describes the properties of available and emerging radiation detector and read-out technologies and discusses how they may affect PET scanner performance. After a general introduction, there is a section in which the physical properties of several different detector scintillators are compared. This is followed by a discussion of recent advances in read-out electronics. Finally, the physical performance of the several commercial PET scanners is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2a, b.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. This result is lower than the experimental one [12, 13]. The differences are due to the formation of a particle with higher momentum, the positronium, a hydrogenoid atom where the positron is in a bound system with an electron. The positronium annihilates in 2γ either from the para-positronium (single state) or predominantly from the ortho-positronium (triplet state).

  2. For ultra-high-resolution PET scanner, the fluorescent photon should also be considered.

  3. Webpages of manufacturers of scintillation materials: 1, http://www.bicron.com; 2, http://www.rexon.com; 3, http://www.crystran.co.uk; 4, http://www.hilger-crystals.co.uk; 5, http://www.scionixusa.com/scintillation_detectors.html; 6, http://www.utari.com; 7, http://www.girmet.ru/~ramet/scintillator.htm; 8, an exceptionally rich source of up-to-date reference material on scintillators is the Web Page, University of California, Lawrence Berkeley National Laboratories, Center for Functional Imaging, http://cfi.lbl.gov/instrumentation/Publications.html.

  4. Thermionic noise is the spontaneous emission of electrons from the photocathode. For a bi-alkali photocathode at room temperature, approximately 100–1,000 electrons/cm2·s are produced, corresponding to dark currents of between 16 and 160 pA.

  5. To convert from kBq/cc in a patient into an administered activity, divide by 103 to convert to MBq/cc, multiply by the patient weight 70,000 g, divide by the fraction of the torso body activity within the field of view (approx one-fifth) and divide by 1.5 to account for physical decay and patient clearance between the injection time and the scan time.

References

  1. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 1975; 16:210–224.

    CAS  PubMed  Google Scholar 

  2. Yamamoto Y, Thompson CJ, Diksic M, Meyer M, Feindel WH. Positron emission tomography. J Radiat Phys Chem 1984; 24:385–403.

    Article  CAS  Google Scholar 

  3. Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography. New York: Raven Press, 1986.

  4. Budinger TF, Derenzo SE, Huesman RH, Cahoon JL. PET: instrumentation perspectives. Proceedings of the Society of Photo-optical Instrumentation Engineers 1982; 372:3–13.

    Google Scholar 

  5. Wahl RL, ed. Principles and practice of positron emission tomography. Philadelphia: Lippincott Wiliams & Wilkins, 2002.

  6. Fermi E. Nuclear physics. Chicago: The University of Chicago Press, 1949.

  7. Heitler W. The quantum theory of radiation. New York: Dover Publications, 1953.

  8. Cho ZH, Chan JK, Ericksson L, Singh M, Graham S, MacDonald NS, Yano Y. Positron ranges obtained from biomedically important positron-emitting radionuclides. J Nucl Med 1975; 16:1174–1176.

    CAS  PubMed  Google Scholar 

  9. Wu CS, Shaknov I. The angular correction of scattered annihilation radiation. Phys Rev 1950; 77:136.

    Article  CAS  Google Scholar 

  10. Eisberg R, Resnick R. Quantum physics of atoms, molecules, solids, nuclei, and particles. New York: Wiley, 1985.

  11. Brownell GL, Sweet WH. Localitation of brain tumours with positron emitters. Nucleonics 1953; 11:40–45.

    Google Scholar 

  12. Colombino P, Fiscella B, Trossi L. Study of positronium in water and ice from 22 to −144°C by annihilation quanta measurements. Il Nuovo Cimento 1965; xxxviii(2):707–723.

    Google Scholar 

  13. Berko S, Hereford FL. Experimental studies of positron interactions in solids and liquids. Rev Modern Phys 1956; 28:299–307.

    Article  CAS  Google Scholar 

  14. Zaidi H. Comparative evaluation of scatter correction techniques in 3D positron emission tomography. Eur J Nucl Med 2000; 27:1813–1826.

    CAS  PubMed  Google Scholar 

  15. Melcher CL. Scintillation crystals for PET. J Nucl Med 2000; 41:1051–1055.

    CAS  PubMed  Google Scholar 

  16. Visser V, Melcher CL, Schweitzer JS, Suzuki H, Tombrello TA. Photo stimulated luminescence and thermoluminescence of LSO scintillators. IEEE Trans Nucl Sci 1994; 41:689–693.

    Article  CAS  Google Scholar 

  17. Dorendos P, van Eijk CWE, eds. Proceedings int. conf. on inorganic scintillators and their applications, SCINT 95. Delft: Delft University Press, 1996.

  18. Balcerzyk M, Moszynski M, Kapusta M, Szawlowski M. Timing properties of LuAP:Ce studies with large area avalanche photodiodes. IEEE Trans Nucl Sci 2001; NS-48:2344–2347.

    Google Scholar 

  19. Moses WW, Weber MJ, Derenzo SE, Perry D, Berdahl P, Boatner LA. Prospects for dense infrared scintillators. IEEE Trans Nucl Sci 1998; 45:462–466.

    Article  CAS  Google Scholar 

  20. Lerch MLF, Rosenfeld AB, Taylor GN, Meikle SR, Perevertailo VL. Spectral characterization of blue-enhanced silicon photodiode. IEEE Trans Nucl Sci 2001; 48:1220–1224.

    Article  CAS  Google Scholar 

  21. Cherry SR, Shao Y, Tornai M, Siegel S, Ricci AR, Phelps ME. Collection of scintillation light from small BGO crystals. IEEE Trans Nucl Sci 1995; 42:1058–1063.

    Article  Google Scholar 

  22. Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 2001; 42:1821–1830.

    CAS  PubMed  Google Scholar 

  23. Karp JS, Muehllehner G, MankofF DA, Ordonez CE, Ollinger JM, Daube-Witherspoon ME, Haigh AT, Beerbohm DJ. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 1990; 31:617–627.

    CAS  PubMed  Google Scholar 

  24. Kapusta M, Moszynski M, Balcerzyk M, Braziewicz J, Wolski D, Pawelke J, Klamra W. Comparison of the scintillation properties of LSO:Ce manufactured by different laboratories and of LGSO:Ce. IEEE Trans Nucl Sci 2000; 47:1341–1345.

    Article  CAS  Google Scholar 

  25. Casey ME, Erikson L, Schmand M, Andreaco MS, Paulus M, Dahlbom M, Nutt R. Investigation of LSO crystal for high spatial resolution positron emission tomography. IEEE Trans Nucl Sci 1997; 44:1109–1113.

    Article  CAS  Google Scholar 

  26. Saoudi A, Pepin C, Pepin C, Houde D, Lecomte R. Scintillation light emission studies of LSO scintillators. IEEE Trans Nucl Sci 1999; 46:1925–1928.

    CAS  Google Scholar 

  27. Balcerzyk M, Moszynski M, Kapusta K, Wolski D, Pawelke J, Melcher CL. YSO, LSO, GSO and LGSO. A study of energy resolution and nonproportionality. IEEE Trans Nucl Sci 2000; 47:1319–1323.

    Article  CAS  Google Scholar 

  28. Melcher CL, Schweitzer JS. Cerium-doped lutetium oxyorthosilicate: a fast and efficient new scintillator. IEEE Trans Nucl Sci 1992; NS-39:502–505.

    Google Scholar 

  29. Muehllehner G, Karp JS, Surti S. Design considerations for PET scanners. Q J Nucl Med 2002; 46:16–23.

    PubMed  Google Scholar 

  30. Wojtowicz AJ, Szupryczynski P, Wisniewski D, Glodo J, Drozdowski W. Electron traps and scintillation mechanisms in LuAlO3:Ce. J Phys Condensed Matter 2001; 13:9599–9619.

    Article  CAS  Google Scholar 

  31. Moszynski M, Wolski D, Ludziejewski T, Kapusta M, Lempicki A, Brecher C, Wisniewski D, Wojtowicz AJ. Properties of the new LuAP:Ce scintillator. Nucl Instrum Meth 1997; A385:123–131.

    Google Scholar 

  32. Shlichta PJ. An exhaustive and systematic search for optimal PET scintillator materials. Presented at IEEE NSS and MIC Conference 2001, Conference Record, N12-69. IEEE Trans Nucl Sci 2002; NS-49.

  33. DeRenzo SE, Weber MJ. Prospects of first-principle calculations of scintillator properties. Nucl Instrum Meth 1999; A422:111–118.

    Google Scholar 

  34. Lecoq P, Korzhik M. New inorganic scintillation materials development for medical imaging. IEEE Trans Nucl Sci 2002; 49:1651–1654.

    Article  CAS  Google Scholar 

  35. Van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol 2002; 47:R85–R106.

    PubMed  Google Scholar 

  36. Moses WW, Derenzo SE, Budinger TF. PET detector modules on novel detector technologies. Nucl Instrum Meth 1994; A353:189–194.

    Google Scholar 

  37. Knoll GF. Radiation detection and measurement, 3rd edn. New York: Wiley, 2000.

  38. Sze SM. Physics of semiconductor devices. New York, Wiley, 1981.

  39. Gatti E, Rehak P. Semiconductor drift chamber on application of novel charge transport scheme. Nucl Instrum Meth 1984; A225:608–614.

    Google Scholar 

  40. Lutz G. Semiconductor radiation detectors. Nucl Instrum Meth 1995; A367:21–33.

    Google Scholar 

  41. Delaney CFG, Finch EC. Some simple considerations on pulse shapes in radiation detectors. Am J Phys 1984; 52:351–354.

    CAS  Google Scholar 

  42. Radeka V. Low noise techniques in detectors. Phys Rev Nucl Part Sci 1988; 38:217–277.

    Article  CAS  Google Scholar 

  43. Groom DE. Silicon photon diode detection of bismuth-germanate scintillator light. Nucl Instrum Meth 1984; A219:141–148.

    Google Scholar 

  44. Holland SE, et al. Development of low noise, back-side illuminated silicon photodiode array. IEEE Trans Nucl Sci 1997; NS-44:443–447.

    Google Scholar 

  45. Gruber GI, et al. A compact 64 pixel Cs(Tl)/Si PIN photodiode imaging module with IC readout. IEEE Trans Nucl Sci 2002; NS-49:147–152.

    Google Scholar 

  46. Levin CS, Hoffman EJ. Investigation of a new readout scheme for high resolution scintillation crystals arrays using photodiodes. IEEE Trans Nucl Sci 1997; NS-44:1208.

    Google Scholar 

  47. Moses WW, Derenzo SE. Gamma ray spectroscopy and timing using LSO and PIN photodiodes. IEEE Trans Nucl Sci 1995; NS-42:597.

    Google Scholar 

  48. Patt BE, Iwanczyk JS, Tull CR, Segal JD, MacDonald LR, Tornai MP, Kenney CJ, Hoffman EJ. Fast timing silicon photodetectors. IEEE Trans Nucl Sci 2000; 47:957–964.

    Article  CAS  Google Scholar 

  49. Allier CP, Valk H, Huizenga J, Bom VR, Hollander RW, van Eijk CWE. Comparison study of silicon detectors. IEEE Trans Nucl Sci 1998; 45:576–580.

    Article  CAS  Google Scholar 

  50. Lecomte R, Cadorette J, Richard P, Rodrigue S, Rouleau D. Design and engineering aspects of a high resolution positron for small animal imaging. IEEE Trans Nucl Sci 1994; 41:1446–1452.

    Article  Google Scholar 

  51. Shah KS, Farrell R, Cirignano L, Grazioso R, Bennett P. Large-area APDs and monolithic APD arrays. IEEE Trans Nucl Sci 2001; NS-48:2352–2356.

    Google Scholar 

  52. Pichler B, Boning G, Lorenz E, Mirzoyan R, Pimpl W, Schwaiger M, Ziegler SI. Studies with a prototype high resolution PET scanner based on LSO-APD modules. IEEE Trans Nucl Sci 1998; 45:1298–1302.

    Article  Google Scholar 

  53. Fazzi A Pignatel GU, Dalla Betta GF, Boscardin M, Varoli V, Verzellesi G. Charge preamplifier for hole collecting PIN diode and integrated tetrode N-JFET. IEEE Trans Nucl Sci 2000; 47:829–833.

    Article  CAS  Google Scholar 

  54. Moses WW,.Derenzo SE, Nutt R, Digby WM, Williams CW, Andreaco M. Performance of PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction. IEEE Trans Nucl Sci 1993; 40:1036–1040.

    Article  CAS  Google Scholar 

  55. Moses WW, Derenzo SE. Design studies for a PET detector module using a PIN photodiodes to measure depth of interaction. IEEE Trans Nucl Sci 1994; 41:1441–1445.

    Article  CAS  Google Scholar 

  56. Huber JS, Moses WW, Virador PRG. Calibration of PET detector module that measure depth of interaction. IEEE Trans Nucl Sci 1998; 45:1268–1272.

    Article  CAS  Google Scholar 

  57. Huber JS, Moses WW, Andreaco MS, Petterson O. An LSO scintillator array for a PET detector module with depth of interaction measurements. IEEE Trans Nucl Sci 2001; 48:684–688.

    Article  Google Scholar 

  58. Rogers JG Moisan C, Hoskinson EM, Andreaco MS, Williams CW, Nutt R. A practical block detector for a depth encoding PET camera. IEEE Trans Nucl Sci 1996; 43:3240–3248.

    Article  Google Scholar 

  59. Robar JL, Thompson CJ, Murthy K, Clancy R, Bergman AM. Construction and calibration of detectors for high resolution metabolic breast cancer imaging. Nucl Instrum Meth 1997; 392:402–406.

    Article  CAS  Google Scholar 

  60. Miyaoka RS, Lewellen TK, Yu H, McDaniel DL. A depth of interaction PET detector module. J Nucl Med 1998; 39:772 Suppl S.

    Google Scholar 

  61. Shao YP, Cherry SR, Siegel S, Silverman RW, Majewski S. Evaluation of multi-channel PMTs for readout of scintillator arrays. Nucl Instrum Meth 1997; A390:209–218.

    Google Scholar 

  62. Shao Y, Cherry SR. A study of depth of interaction measurements using bent optical fibers. J Nucl Med 1998; 39:191 Suppl S.

    Google Scholar 

  63. Yamamoto S, Ishibashi I, “A GSO depth of interaction detector for PET. IEEE Trans Nucl Sci 1998; 45:1078–1082.

    Article  CAS  Google Scholar 

  64. Schmand M, Eriksson L, Casey ME, Wienhard K, Flugge G, Nutt R. Advantages using pulse shape discrimination to assign the depth of interaction information (DOI) from a multi layer phoswich detector. IEEE Trans Nucl Sci 1999; 46:985–990.

    Article  Google Scholar 

  65. Inadama N, Murayama H, Omura T, Yamashita T, Yamamoto S, Ishibashi H, Kawai H, Omi K, Umehara T, Kasahara T. A depth of interaction detector for PET with GSO doped with different amount of CE. IEEE Trans Nucl Sci 2002; 49:629–633.

    Article  CAS  Google Scholar 

  66. Murayama H, Ishibashi H, Uchida H, Omura T, Yamashita T. Depth encoding multicrystal detector for PET. IEEE Trans Nucl Sci 1998; 45:1152–1157.

    Article  CAS  Google Scholar 

  67. MacDonald LR, Dahlbohm M. Depth of interaction for PET using segmented crystals. IEEE Trans Nucl Sci 1998; 45:2144–2148.

    Article  CAS  Google Scholar 

  68. Shao Y, Silverman RW, Farrell R, Cirignano L, Grazioso R, Shah KS, Visser G, Clajus M, Tumer TO, Cherry SR. Design studies of a high resolution PET detector using APD arrays. IEEE Trans Nucl Sci 2000; 47:1051–1057.

    Article  Google Scholar 

  69. Fremout AAR, Chen RR, Bruyndonckx P, Tavernier SPK. Spatial resolution and depth of interaction studies with a PET detector module composed of LSO and an APD array. IEEE Trans Nucl Sci 2002; 49:131–138.

    Article  Google Scholar 

  70. Levin CS. Design of a high resolution and high sensitivity scintillation crystal array with nearly perfect light collection. IEEE Trans Nucl Sci 2002; 49:2236–2243.

    Article  Google Scholar 

  71. Nutt R. The history of positron emission tomography. Mol Imag Biol 2002; 4:11–26.

    Article  Google Scholar 

  72. Kops ER, Herzog H, Schmid A, Holte S, Feinendegen LE. Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 1990; 14:437–445.

    PubMed  Google Scholar 

  73. Senda M, Tamaki N, Yonekura Y, Tanada S, Murata K, Hayashi N, Fujita T, Saji H, Konishi J, Torizuka K. Performance characteristics of Positologica III: a whole-body positron emission tomograph. J Comput Assist Tomogr 1985; 9:940–946.

    CAS  PubMed  Google Scholar 

  74. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992; 16:804–813.

    CAS  PubMed  Google Scholar 

  75. Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, Heiss WD. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994; 18:110–118.

    CAS  PubMed  Google Scholar 

  76. Mullani NA, Gould KL, Hartz RK, Hitchens RE, Wong WH, Bristow D, Adler S, Philippe EA, Bendriem B, Sanders M. Design and performance of POSICAM 6.5 BGO positron camera. J Nucl Med 1990; 5:628–631.

    Google Scholar 

  77. DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994; 35:1398–1406.

    CAS  PubMed  Google Scholar 

  78. Moses WW. Time of flight in PET revisited. IEEE Trans Nucl Sci 2003: in press.

  79. NEMA Standard Publication NU 2-1994. Performance measurements of positron emission tomographs. Washington: National Electrical Manufacturers Association, 1994.

  80. NEMA Standard Publication NU 2-2001. Performance measurements of positron emission tomographs. Rosslyn, VA: National Electrical Manufacturers Association, 2001.

  81. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G, Simcic V, Stearns CW, Adam LE, Kohlmyer S, Sossi V. PET performance measurements using the NEMA NU 2-2001 standard. J Nucl Med 2002; 43:1398–1409.

    PubMed  Google Scholar 

  82. Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1996; 41:1755–1776.

    Article  CAS  PubMed  Google Scholar 

  83. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Squire OD, Braban LE, Ford E, Sidhu K, Mageras GS, Larson SM, Humm JL. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002; 3:366–371.

    Google Scholar 

  84. Kadrmas DJ, Christian PE. Comparative evaluation of lesion detectability for 6 PET imaging platforms using a highly reproducible whole-body phantom with (22)Na lesions and localization ROC analysis. J Nucl Med 2002; 43:1545–1554.

    Google Scholar 

  85. Paigen K. A miracle enough: the power of mice. Nature Med 1995; 1:215–220.

    CAS  PubMed  Google Scholar 

  86. Chien KR. Genes and physiology: molecular physiology in genetically engineered animals. J Clin Investig 1996; 97:901–909.

    CAS  Google Scholar 

  87. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000; 41:661–681.

    CAS  PubMed  Google Scholar 

  88. Cutler PD, Cherry SR, Hoffman EJ. Design features performance of a PET system for animal research. J Nucl Med 1992; 33:595–604.

    CAS  PubMed  Google Scholar 

  89. Hichwa R. Are animal scanners really necessary for PET? J Nucl Med 1994; 35:1396–1397.

    CAS  PubMed  Google Scholar 

  90. Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002; 46:35–47.

    PubMed  Google Scholar 

  91. Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Phelps ME. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40:1164–1175.

    CAS  PubMed  Google Scholar 

  92. Chatziioannou A, Tai YC, Doshi N, Cherry SR. Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 2001; 46:2899–2910.

    Article  CAS  PubMed  Google Scholar 

  93. Del Guerra A, Di Domenico G, Scandola M, Zavattini G. YAP-PET: first results of a small animal positron emission tomograph based on YAP:Ce finger crystals. IEEE Trans Nucl Sci 1998; 45:3105–3108.

    Article  Google Scholar 

  94. Motta A, Damiani C, Del Guerra A, Di Domenico G, Zavattini G. Use of a fast deconvolution EM algorithm for 3-D image reconstruction with the YAP-PET tomograph. Computerized Medical Imaging and Graphics 2002; 26:293–302.

    Article  CAS  PubMed  Google Scholar 

  95. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution. IEEE Trans Nucl Sci 1999; 46:468–473.

    Article  Google Scholar 

  96. Slates RB, Farahani K, Shao Y, Marsden PK, Taylor J, Summers PE, Williams S, Beech J, Cherry SR. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol 1999; 44:2015–2027.

    Article  CAS  PubMed  Google Scholar 

  97. Jakobs RE, Cherry SR. Complementary emerging techniques: high-resolution PET and MRI. Curr Opin Neurobiol 2001; 11:621–629.

    Article  PubMed  Google Scholar 

  98. Moses WW, Qi J. Fundamental limits of positron emission mammography. Nucl Instrum Meth 2003; A497A:82–89.

    Google Scholar 

  99. Thompson CJ, Murthy K, Weinberg IN, Mako R. Positron emission mammography (PEM): a promising technique for detecting breast cancer. IEEE Trans Nucl Sci 1995; 42:1012–1017.

    Article  Google Scholar 

  100. Raylman RR, Majewski S, Wojcik R, Weisenberger AG, Kross B, Popov V, Bishop HA. The potential role of positron emission mammography for detection of breast cancer. A phantom study. Med Phys 2000; 27:1943–1954.

    Article  CAS  PubMed  Google Scholar 

  101. Del Guerra A, Belcari N, Bencivelli W, Motta A, Righi S, Vaiano A, Di Domenico G, Moretti E, Sabba N, Zavattini G, Campanini R, Lanconelli R, Riccardi A, Cinti MN, Pani R. Monte Carlo study and experimental measurements of breast tumor detectability with a novel PEM apparatus. Conference Records of the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk, Virginia, USA, 10–16 November 2002, and submitted to IEEE Trans Nucl Sci 2003: in press.

  102. Ling CC, Humm JL, Larson SM, Amols H, Fuks Z, Leibel S, Koutcher JA. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000; 47:551–560.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to give special thanks to James Bland (CTI Knoxville, TN), Phil Vernon (General Electric, Toledo, OH), and Joel Karp (U.Penn, Philadephia, PA) for providing assistance in the preparation of Table 3, and to Bill Strauss (MSKCC, New York) for providing the impetus for this manuscript, for his excellent suggestions regarding content, and for his assistance in editing the final draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Humm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humm, J.L., Rosenfeld, A. & Del Guerra, A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30, 1574–1597 (2003). https://doi.org/10.1007/s00259-003-1266-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1266-2

Keywords

Navigation