Skip to main content
Log in

[11C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to explore the potential of a new selective dopamine transporter (DAT) compound as a radioligand for positron emission tomography (PET) examination of DAT in the human brain. The high affinity DAT compound N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I) was radiolabelled by the O-methylation approach and the binding was characterised by PET in cynomolgus monkeys and a healthy man. Metabolite levels in plasma were measured by gradient high-performance liquid chromatography. O-methylation of the corresponding free acid precursor with [11C]methyl triflate gave high radiochemical yield (80%) and specific radioactivity (55 GBq/μmol). [11C]PE2I binding in cynomolgus monkeys was nine times higher in the striatum than in the cerebellum at peak equilibrium, which appeared 55–65 min after injection. Displacement and pretreatment measurements using unlabelled β-CIT, GBR 12909, cocaine, citalopram and maprotiline confirmed that [11C]PE2I binds selectively to DAT. In a preliminary study in one human subject the radioactivity ratios of the striatum and substantia nigra to the cerebellum were 10 and 1.8, respectively, at peak equilibrium, which appeared at 40–50 min and 20 min, respectively, after injection. The fraction of the total radioactivity in monkey and human plasma representing unchanged [11C]PE2I was 15–20% at 40 min after injection. The present characterisation of binding in monkey and man suggests that [11C]PE2I is a suitable PET radioligand for quantitative regional examination of DAT in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. A
Fig. 5A, B.
Fig. 6A, B.
Fig. 7A, B.
Fig. 8. A
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Malison RT, McDougle CJ, van Dyck CH, Scahill L, Baldwin RM, Seibyl JP, Price LH, Leckman JF, Innis RB. [123I]beta-CIT SPECT imaging of striatal dopamine transporter binding in Tourette's disorder. Am J Psychiatry 1995; 152:1359–1361.

    CAS  PubMed  Google Scholar 

  2. Malison RT, Best SE, van Dyck CH, McCance EF, Wallace EA, Laruelle M, Baldwin RM, Seibyl JP, Price LH, Kosten TR, Innis RB. Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I]beta-CIT SPECT. Am J Psychiatry 1998; 155:832–834.

    CAS  PubMed  Google Scholar 

  3. Tissingh G, Bergmans P, Booij J, Winogrodzka A, van Royen EA, Stoof JC, Wolters EC. Drug-naive patients with Parkinson's disease in Hoen and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]β-CIT SPECT. J Neurol 1998; 245:14–20.

    Article  CAS  PubMed  Google Scholar 

  4. Laasonen-Balk T, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Lehtonen J, Tiihonen J. Striatal dopamine transporter density in major depression. Psychopharmacology 1999; 144:282–285.

    Google Scholar 

  5. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999; 354:2132–2133.

    Article  CAS  PubMed  Google Scholar 

  6. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adults patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2000; 285:107–110.

    Article  CAS  PubMed  Google Scholar 

  7. Marek K, Innis RB, van Dyck CH, Fussell B, Early M, Eberly S, Oakes D, Seibyl JP. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson's disease progression. Neurology 2001; 57:2089–2094.

    CAS  PubMed  Google Scholar 

  8. Parkinson study group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levedopa on Parkinson's disease progression. JAMA 2002; 287:1653–1667.

    PubMed  Google Scholar 

  9. Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands – state of the art and new trends. Q J Nucl Med 2001; 45:139–152.

    CAS  PubMed  Google Scholar 

  10. Neumeyer JL, Wang S, Milius RA, Baldwin RM, Zea-Ponce Y, Hoffer PB, Sybirska E, Al-Tikriti M, Charney DS, Malison RT, Laruelle M, Innis RB. [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane: High-affinity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chem 1991; 34:3144–3146.

    CAS  PubMed  Google Scholar 

  11. Innis RB, Seibyl JP, Scanley BE, Laruelle M, Abi-Dargham A, Wallace E, Baldwin RM, Zea-Ponce Y, Zoghbi S, Wang S, Gao Y, Neumeyer JL, Charney DS, Hoffer PB, Marek KL. Single photon computed tomographic imaging demonstrates loss of striatal dopamine transporters on Parkinson disease. Proc Natl Acad Sci U S A 1993; 90:11965–11969.

    CAS  PubMed  Google Scholar 

  12. Müller L, Halldin C, Farde L, Karlsson P, Hall H, Swahn C-G, Neumeyer JL, Gao Y. Milius R. [11C]β-CIT, a cocaine analogue preparation, autoradiography and preliminary PET investigations. Nucl Med Biol 1993; 20:249–255.

    PubMed  Google Scholar 

  13. Någren K, Müller L, Halldin C, Swahn CG, Lehikoinen P. Improved synthesis of some commonly used PET radioligands by the use of [11C]methyl triflate. Nucl Med Biol 1995; 22:235–239.

    Article  PubMed  Google Scholar 

  14. Farde L, Halldin C, Müller L, Suhara T, Karlsson P, Hall H. PET study of [11C]β-CIT binding to monoamine transporters in the monkey and human brain. Synapse 1994; 16:93–103.

    PubMed  Google Scholar 

  15. Neumeyer JL, Wang S, Gao Y, Milius RA, Kula NS, Campbell A, Baldessarini RJ, Zea-Ponce Y, Baldwin RM, Innis RB. N-ω-Fluoroalkyl analogs of (1R)-2β-carbomethoxy-3β-(iodophenyl)tropane (β-CIT): radiotracers for positron emission tomography and single photon emission computed tomography imaging of dopamine transporters. J Med Chem 1994; 37:1558–1561.

    CAS  PubMed  Google Scholar 

  16. Baldwin RM, Zea-Ponce Y, Al-Tikriti MS, Zoghbi SS, Seibyl JP, Charney DS, Hoffer PB,Wang S, Milius RA, Neumeyer JL, Innis RB. Regional brain uptake and pharmacokinetics of [123I]N-ω-fluoroalkyl-2β-carboxy-3β-(4-iodophenyl)nortropane esters in baboons. Nucl Med Biol 1995; 22:211–219.

    Article  CAS  PubMed  Google Scholar 

  17. Kuikka JT, Bergström KA, Ahonen A, Hiltunen J, Haukka J, Länsimies E, Wang S. Neumeyer JL. Comparison of iodine-123 labeled 2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane (β-CIT-FP) for the dopamine transporters in the living human brain. Eur J Nucl Med 1995; 22:682–686.

    CAS  PubMed  Google Scholar 

  18. Lundkvist C, Halldin C, Ginovart N, Swahn C-G, Farde L. [18F]β-CIT-FP is superior to [11C]β-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol 1997; 24:621–627.

    Article  CAS  PubMed  Google Scholar 

  19. Chaly T, Dhawan V, Kazumata K, et al. Radiosynthesis of [18F]N-3-fluoropropyl-2-β-carbomethoxy-3-β-(4-iodophenyl)nortropane and the first human study with positron emission tomography. Nucl Med Biol 1996; 23:999–1004.

    Article  CAS  PubMed  Google Scholar 

  20. Halldin C, Farde L, Lundkvist C, Ginovart N, Nakashima Y, Karlsson P, Swahn C-G. [11C]β-CIT-FE, a radioligand for quantitation of dopamine transporters in the living brain using positron emission tomography. Synapse 1996; 22:386–390.

    Article  CAS  PubMed  Google Scholar 

  21. Farde L, Ginovart N, Halldin C, Chou Y-H, Olsson H, Swahn C-G. A PET study of [11C]β-CIT-FE, binding to the dopamine transporter in the monkey and human brain. Int J Neuropsychopharm 2000; 3:203–214.

    Article  CAS  Google Scholar 

  22. Günther I, Hall H, Halldin C, Swahn C-G, Farde L, Sedvall G. [125C]β-CIT-FE and [125C]β-CIT-FP are superior to [125C]β-CIT for dopamine transporter visualisation: autoradiographic evaluation in the human brain. Nucl Med Biol 1997; 24:629–634.

    Article  PubMed  Google Scholar 

  23. Wong DF, Yung B, Dannals RF, Shaya EK, Ravert HT, Chen CA, Chan B, Folio T, Scheffel U, Ricaurte GA, Neumeyer JL, Wagner HN, Kuhar MJ. In vivo imaging of baboon and human dopamine transporters by positron emission tomography using [11C]WIN 35,428. Synapse 1993; 15:130–142.

    CAS  PubMed  Google Scholar 

  24. Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, Hietala J. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects. Synapse 1998; 28:244–250.

    Article  CAS  PubMed  Google Scholar 

  25. Fischman AJ, Bonab AA, Babich JW, Palmer EP, Alpert NM, Elmaleh DR, Callahan RJ, Barrow SA, Graham W, Meltzer PC, Hanson RN, Madras BK. Rapid detection of Parkinson's disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 1998; 29:128–141.

    Article  CAS  PubMed  Google Scholar 

  26. Chalon S, Garreau L, Emond P, Zimmer L, Vilar MP, Besnard J-C, Guilloteau D. Pharmacological characterization of (E)-N-(3-iodoprop-2-enyl)-2β-carbomethoxy-3β-(4'-methylphenyl)nortropane as a selective and potent inhibitor of the neuronal dopamine transporter. J Pharmacol Exp 1999; 291:648–654.

    CAS  Google Scholar 

  27. Hall H, Halldin C, Guilloteau D, Besnard J-C, Emond P, Chalon S, Farde L, Sedvall G. Specific visualization of the dopamine transporter in the human brain post-mortem with the new selective ligand [125I]PE2I. Neuroimage 1999; 9:108–116.

    Article  CAS  PubMed  Google Scholar 

  28. Emond P, Garreau L, Chalon S, Boazi M, Caillet M, Bricard J, Frangin Y, Mauclaire L, Besnard J-C, Guilloteau D. Synthesis and ligand binding of nortropane derivatives: N-substituted-2β-carbomethoxy-3β-(4'-iodophenyl)nortropane and N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(3',4'-disubstituted phenyl)nortropane. New affinity and selectivity compounds for the dopamine transporter. J Med Chem 1997; 40:1366–1372.

    Article  CAS  PubMed  Google Scholar 

  29. Guilloteau D, Emond P, Baulieu JL, Garreau L, Frangin Y, Pourcelot L, Mauclaire L, Besnard J-C, Chalon S. Exploration of the dopamine transporter: in vitro and in vivo characterization of a high-affinity and high-specificity iodinated tropane derivative (E)-N-(3-iodoprop-2-enyl)-2β-carbomethoxy-3β-(4'-methylphenyl)nor-tropane (PE2I). Nucl Med Biol 1998; 25:331–337.

    CAS  PubMed  Google Scholar 

  30. Kuikka JK, Baulieu JL, Hiltunen J, Halldin C, Bergström K, Farde L, Emond P, Chalon S, Yu M, Nikula T, Laitinen T, Karhu J, Tupala E, Hallikainen T, Kolehmainen V, Mauclaire L, Maziere B, Tiihonen J, Guilloteau D. Pharmacokinetics and dosimetry of iodine-123 labelled PE2I in humans, a radioligand for dopamine transporter imaging. Eur J Nucl Med 1998; 25:531–534.

    CAS  PubMed  Google Scholar 

  31. Jewett DM. A simple synthesis of [11C]methyl triflate. Appl Radiat Isot 1992; 43:1383–1385.

    Article  CAS  Google Scholar 

  32. Sandell J, Langer O, Larsen P, Dolle F, Vaufrey F, Demphel S, Crouzel C, Halldin C. Improved specific radioactivity of the PET radioligand [11C]FLB457 by the use of GE Medical Systems PETtrace MeI Microlab. J Lab Compd Radiopharm 2000; 43:331–338.

    Article  CAS  Google Scholar 

  33. Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, Heiss W-D. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994; 18:110–118.

    CAS  PubMed  Google Scholar 

  34. Karlsson P, Farde L, Halldin C, Swahn C-G, Sedvall G, Foged C, Hansen KT, Skrumsager B. PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor. Psychopharmacology 1993; 113:149–156.

    Google Scholar 

  35. Andersen P. The dopamine uptake inhibitor GBR12909: selectivity and molecular mechanisms of action. Eur J Pharmacol 1989; 166:493–504.

    CAS  PubMed  Google Scholar 

  36. Pinder R, Brogden R, Speight T, Avery G. Maprotiline: a review of its pharmacological properties and therapeutic efficacy in mental depressive states. Drugs 1977; 13:321–352.

    CAS  PubMed  Google Scholar 

  37. Hyttel J. Citalopram: Pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6:277–295.

    CAS  PubMed  Google Scholar 

  38. Bergström M, Boëthius J, Eriksson L, Greitz T, Ribbe T, Widén L. Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 1981; 5:136–141.

    Google Scholar 

  39. Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B. Automated blood sampling system for positron emission tomography. IEEE Trans Nucl Sci 1988; 35:703–707.

    Article  Google Scholar 

  40. Halldin C, Swahn C-G, Farde L, Sedvall G. Radioligand disposition and metabolism. Key information in early drug development. In: Comar D, ed. PET for drug development and evaluation. Dordrecht: Kluwer Academic; 1995:55–65.

  41. Madras BK, Gracz LM, Meltzer PC, Liang AY, Elmaleh DR, Kaufman MJ, Fischman AJ. Altropane, a SPECT or PET imaging probe for dopamine neurons. II. Distribution to dopamine-rich regions of primate brain. Synapse 1998; 29:105–115.

    Article  CAS  PubMed  Google Scholar 

  42. Farde L, Eriksson L, Blomqvist G, Halldin C. Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the saturation analysis. J Cerebr Blood Flow Metab 1989; 9:696–708.

    CAS  Google Scholar 

  43. Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 1998; 18:941–950.

    PubMed  Google Scholar 

  44. Drebin RA, Carpenter L, Hanrahan P. Volume rendering. Comput Graph 1988; 22:65–74.

    Google Scholar 

  45. Pauli S, Sedvall G. Three-dimensional visualization of the benzodiazepine receptor population within a living human brain using PET and MRI. Eur Arch Psychiatry Clin Neurosci 1997; 247:61–70.

    CAS  PubMed  Google Scholar 

  46. Farde L, Halldin C, Stone-Elander S, Sedvall G. Analysis of human dopamine receptor subtypes using11C-SCH 23390 and 11C-raclopride.Psychopharmacology 1987; 92:278–284.

    CAS  PubMed  Google Scholar 

  47. Halldin C, Farde L, Högberg T, Hall H, Ström P, Ohlberger A, Solin O. A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D-2 binding. Nucl Med Biol 1991; 18:871–881.

    CAS  Google Scholar 

  48. Farde L, Pauli S, Hall H, Eriksson L, Halldin C, Högberg T, Nilsson L, Sjögren I, Stone-Elander S. Stereoselective binding of11C-raclopride in living human brain—a search for extrastriatal central D2-dopamine receptors by PET. Psychopharmacology 1988; 94:471–478.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the Stockholm PET group for their assistance in the PET experiments. Grants from the Swedish Medical Research Council (12983-01A), Karolinska Institutet, INSERM-MFR, the Région Centre (France) and European program (COST B12) supported this work. Nina Erixon-Lindroth was supported by the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Halldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halldin, C., Erixon-Lindroth, N., Pauli, S. et al. [11C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain. Eur J Nucl Med Mol Imaging 30, 1220–1230 (2003). https://doi.org/10.1007/s00259-003-1212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1212-3

Keywords

Navigation