Skip to main content

Advertisement

Log in

Imaging of large vessel vasculitis with 18FDG PET: illusion or reality? A critical review of the literature data

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Fluorine-18 fluorodeoxyglucose positron emission tomography (18FDG PET) plays a major role in the management of oncology patients. Owing to the singular properties of the glucose tracer, many patients suffering from non-malignant diseases such as inflammatory or infectious diseases may also derive clinical benefit from the appropriate use of metabolic imaging. Large vessel vasculitides such as giant cell arteritis and Takayasu arteritis are other examples that may potentially extend the field of 18FDG PET indications. The purpose of the present article is to assess the feasibility of metabolic imaging in vasculitis on the basis of the current literature data. In particular, the clinical context and the 18FDG imaging patterns seen in patients with large vessel vasculitis are analysed in order to identify potential indications for metabolic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C.
Fig. 2.
Fig. 3A, B.
Fig. 4.

Similar content being viewed by others

References

  1. Delbeke D. Oncological applications of FDG PET Imaging. J Nucl Med 1999; 40:1706–1715.

    CAS  PubMed  Google Scholar 

  2. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Mazière B. FDG accumulation and tumor biology. Nucl Med Biol 1998; 25:317–322.

    Article  CAS  PubMed  Google Scholar 

  3. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33:1972–1980.

    CAS  PubMed  Google Scholar 

  4. Ishimori T, Saga T, Mamede M, Kobayashi H, Higashi T, Nakamoto Y, Sato N, Konishi J. Increased18F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med 2002; 43:658–663.

    Google Scholar 

  5. Jones HA, Cadwallader KA, White JF, Uddin M, Peters AM, Chilvers ER. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of18F-FDG PET images. J Nucl Med 2002; 43:652–657.

    Google Scholar 

  6. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG-PET imaging: physiologic and artifactual fluorodeoxyglucose accumulation. J Nucl Med 1996; 36:441–446.

    Google Scholar 

  7. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, Romahn J, van Kaick G. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991; 32:1485–1490.

    CAS  PubMed  Google Scholar 

  8. Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994; 35:1647–1649.

    CAS  PubMed  Google Scholar 

  9. Stumpe KD, Dazzi H, Schaffner A, von Schulthess GK. Infection imaging using whole-body FDG PET. Eur J Nucl Med 2000; 27:822–832.

    Article  CAS  PubMed  Google Scholar 

  10. Bakheet SM, Powe J, Ezzat A, Rostom A. F-18-FDG uptake in tuberculosis. Clin Nucl Med 1998; 23:739–742.

    CAS  PubMed  Google Scholar 

  11. Franzius C, Biermann M, Hulskamp G, Frosch M, Roth J, Sciuk J, Schober O. Therapy monitoring in aspergillosis using F-18 FDG positron emission tomography. Clin Nucl Med 2001; 26:822–832.

    Article  Google Scholar 

  12. Lie JT. Illustrated histopathological classification criteria for selected vasculitis syndromes. American Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum 1990; 33:1074–1087.

    CAS  PubMed  Google Scholar 

  13. Hunder GG. Classification/diagnostic criteria for GCA/PMR. Clin Exp Rheumatol 2000; 18 (4 Suppl 20):S4–S5.

    Google Scholar 

  14. Arend WP, Michel BA, Bloch DA, et al. the American college of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990; 33:1129–1134.

    CAS  PubMed  Google Scholar 

  15. Jennette JC, Falk R, Andrassy K, et al. Nomenclature of systemic vasculitis. Proposal of an international conference. Arthritis Rheum 1994; 37:187–192.

    CAS  PubMed  Google Scholar 

  16. Gross WL, Trabandt A, Reinhold-Keller E. Diagnosis and evaluation of vasculitis. Rheumatology 2000; 39:245–252.

    Article  CAS  PubMed  Google Scholar 

  17. Salvani C, Cantini F, Boiardi L, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. N Engl J Med 2002; 347:261–271.

    Article  PubMed  Google Scholar 

  18. Blockmans D, Knockaert D, Maes A, De Caestecker J, Stroobants S, Bobbaers H, Mortelmans L. Clinical value of18F-fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 2001; 31:191–196.

    Article  Google Scholar 

  19. Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Gonzalez-Louzao C, Rodriguez-Ledo P. Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy. Semin Arthritis Rheum 2001; 30:249–256.

    Article  CAS  PubMed  Google Scholar 

  20. Lambert M, Hachulla E, Hatron PY, Perez-Cousin M, Beregi JP, Warembourg H, Devulder B. Takayasu's arteritis: vascular investigations and therapeutic management. Experience with 16 patients. Rev Med Interne 1998; 19:878–884.

    Article  CAS  PubMed  Google Scholar 

  21. Evans JM, O'Fallon WM, Hunder GG. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann Intern Med 1995; 122:502–507.

    CAS  PubMed  Google Scholar 

  22. Liu G, Shupak R, Chiu BK. Aortic dissection in giant-cell arteritis. Semin Arthritis Rheum 1995; 25:160–171.

    CAS  PubMed  Google Scholar 

  23. Greene GM, Lain D, Sherwin RM, Wilson JE, McManus BM. Giant cell arteritis of the legs. Clinical isolation of severe disease with gangrene and amputations. Am J Med 1986; 81:727–733.

    CAS  PubMed  Google Scholar 

  24. Klein RG, Hunder GG, Stanson AW, Sheps SG. Large artery involvement in giant cell (temporal) arteritis. Ann Intern Med 1975; 83:806–812.

    CAS  PubMed  Google Scholar 

  25. Nordborg E, Bengtsson BA. Death rates and causes of death in 284 consecutive patients with giant cell arteritis confirmed by biopsy. BMJ 1989; 299:549–550.

    CAS  PubMed  Google Scholar 

  26. Lie JT. Aortic and extracranial large vessel giant cell arteritis: a review of 72 cases with histopathologic documentation. Semin Arthritis Rheum 1995; 24:422–431.

    CAS  PubMed  Google Scholar 

  27. Kerr GS. Takayasu's arteritis. Rheum Dis Clin North Am 1995; 21:1041–1058.

    CAS  PubMed  Google Scholar 

  28. Fauci AS. The vasculitis syndromes. In: Braunwald E, Fauci AS, Kasper DL, Longo DL, Jameson JL, eds. Harrison's principles of internal medicine 2001, 15th edn. New York: McGraw-Hill; 2001:1956–1968.

  29. Ishikawa K. Natural history and classification of occlusive thromboaortopathy (Takayasu's disease). Circulation 1978; 57:27–34.

    CAS  PubMed  Google Scholar 

  30. Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D, Bobbaers H, Mortelmans L. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxf) 1999; 38:444–447.

    Google Scholar 

  31. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000; 108:246–249.

    Article  CAS  PubMed  Google Scholar 

  32. Belhocine T, Kaye O, Delanaye P, Corman C, Baghaie M, Deprez M, Daenen F, De Barsy C, Beckers C, Gomez P, Hustinx R, Foidart-Willems J, Demonty J, Malaise M, Rigo P. Maladie de Horton et atteintes artérielles extra-temporales: utilité de la tomographie par émission de positons au18FDG. A propos de trois observations et revue de la littérature. Rev Med Interne 2002; 23:1–8.

    PubMed  Google Scholar 

  33. De Winter F, Petrovic M, Van de Wiele C, Vogelaers D, Afschrift M, Dierckx RA. Imaging of giant cell arteritis: evidence of splenic involvement using FDG positron emission tomography. Clin Nucl Med 2000; 25:633–634.

    Article  PubMed  Google Scholar 

  34. Turlakow A, Yeung HW, Pui J, Macapinlac H, Liebovitz E, Rusch V, Goy A, Larson SM. Fludeoxyglucose positron emission tomography in the diagnosis of giant cell arteritis. Arch Intern Med 2001; 161:1003–1007.

    Article  CAS  PubMed  Google Scholar 

  35. Hara M, Goodman PC, Leder RA. FDG-PET finding in early-phase Takayasu arteritis. J Comput Assist Tomogr 1999; 23:16–18.

    CAS  PubMed  Google Scholar 

  36. Meller J, Grabbe E, Becker W, Vosshenrich R. Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol 2003; 13:400–405.

    CAS  PubMed  Google Scholar 

  37. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, Conrad M, Vosshenrich R. Early diagnosis and follow-up of aortitis with [18F]FDG PET and MRI. Eur J Nucl Med 2003; 30:730–736.

    CAS  Google Scholar 

  38. Fahey FH. Positron emission tomography instrumentation. Radiol Clin North Am 2001; 39:919–929.

    CAS  PubMed  Google Scholar 

  39. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001; 89:305–316.

    CAS  PubMed  Google Scholar 

  40. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries. A new observation. Clin Nucl Med 2001; 26:314–319.

    CAS  PubMed  Google Scholar 

  41. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A.18F-FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 2002; 32:70–76.

    PubMed  Google Scholar 

  42. Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnström P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002; 105:2708–2711.

    Article  CAS  PubMed  Google Scholar 

  43. Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B, Limet R. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 2002; 23:431–436.

    Article  CAS  PubMed  Google Scholar 

  44. Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, Wahl RL. Detection of atherosclerosis using a novel positron-sensitive probe and18F-fluorodeoxyglucose (FDG). Nucl Med Commun 2001; 22:747–753.

    CAS  PubMed  Google Scholar 

  45. Barron JT, Barany M, Gu L, Parrillo JE. Metabolic fate of glucose in vascular smooth muscle during contraction induced by norepinephrine. J Mol Cell Cardiol 1998; 30:709.

    Article  CAS  PubMed  Google Scholar 

  46. Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 1997; 38:1788–1796.

    CAS  PubMed  Google Scholar 

  47. Vallabhajosula S, Machac J, Knesaurek K, et al. Imaging atherosclerotic macrophage density by positron emission tomography using F-18-fluorodeoxyglucose (FDG). J Nucl Med 1996; 37:1788–1796.

    Google Scholar 

  48. Helft G, Worthley SG, Zhang ZY, Tang C, Rodriguez O, Wei T, Fallon JT, Fayad ZA, Mahac J, Buschsbaum M, Fuster V, Badimon JJ. Non-invasive in vivo imaging of atherosclerotic lesions using fluorine-18 deoxyglucose (18-FDG) PET correlates with macrophage content in a rabbit model [abstract]. Circulation 1999; 100 (Suppl I):I-311.

    Google Scholar 

  49. Mochizuki Y, Fujii H, Yasuda S, Nakahara T, Takahashi W, Ide M, Koide S, Shohtsu A. FDG accumulation in aortic walls. Clin Nucl Med 2001; 26:68–69.

    Article  CAS  PubMed  Google Scholar 

  50. Hoogendoorn EH, Oyen WJG, van Dijk APJ, van der Meer JWM. Pneumococcal aortitis, report of a case with emphasis on the contribution to diagnosis of positron emission tomography using fluorinated deoxyglucose. Clin Microbiol Infect 2003; 9:73–76.

    Article  CAS  PubMed  Google Scholar 

  51. Weyand CM, George BB. Giant cell arteritis: new concepts in pathogenesis and implications for management. Am J Ophthalmol 1997; 123:392–395.

    CAS  PubMed  Google Scholar 

  52. Hotchi M. Pathological studies on Takayasu arteritis [review]. Heart Vessels Suppl 1992; 7:11–17.

    CAS  PubMed  Google Scholar 

  53. Ross R. Atherosclerosis, an inflammatory disease. N Engl J Med 1999; 340:115–126.

    CAS  PubMed  Google Scholar 

  54. Numano F, Kishi Y, Tanaka A, Ohkawara M, Kakuta T, Kobayashi Y. Inflammation and atherosclerosis. Atherosclerotic lesions in Takayasu arteritis [review]. Ann N Y Acad Sci 2000; 902:65–76.

    CAS  PubMed  Google Scholar 

  55. Numano F. Vasa vasoritis, vasculitis and atherosclerosis. Int J Cardiol 2000; 75 Suppl 1:S1–S8; discussion S17–S19.

  56. Kayser M, Younge B, Björnsonn J, Goronzy JJ, Weyland CM. Formation of new vasa vasorum in vasculitis. Am J Pathol 1999; 155:765–774.

    PubMed  Google Scholar 

  57. Rittner HL, Kaiser M, Brack A, Szweda LI, Goronzy JJ, Weyand CM. Tissue-destructive macrophages in giant cell arteritis. Circ Res 1999; 84:1050–1058.

    CAS  PubMed  Google Scholar 

  58. Reape TJ, Groot PH. Chemokines and atherosclerosis. Atherosclerosis 1999; 147:213–225.

    Article  CAS  PubMed  Google Scholar 

  59. Disdier P, Pellissier JF, Harle JR. Significance of isolated vasculitis of the vasa vasorum of temporal artery biopsy. J Rheumatol 1994; 21:258–260.

    CAS  PubMed  Google Scholar 

  60. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol 1996; 54 Suppl 1:21–35.

    Google Scholar 

  61. Deichen JT, Prante O, Gack M, Schmiedehausen K, Kuwert T. Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophage in vitro. Eur J Nucl Med 2003; 30:267–273.

    CAS  Google Scholar 

  62. Zhuang HM, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, Rossman MD, Albelda SM, Alavi A. Dual time point 18F-FDG imaging for differentiating malignant from inflammatory process. J Nucl Med 2001; 42:1412–1417.

    CAS  PubMed  Google Scholar 

  63. Zhao S, Kuge Y, Tsukamoto E, Mochizuki T, Kato T, Hikosaka K, Hosokawa M, Tamaki N. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumors and inflammatory lesions. Eur J Nucl Med 2001; 28:730–735.

    Google Scholar 

  64. Service RF. New dynamic duo: PET, MRI, joined for the first time. Science 1996; 272:1423.

    CAS  PubMed  Google Scholar 

  65. Dizendorf EV, Treyer V, von Schulthess GK, Hany TF. Application of oral contrast media in coregistered positron emission tomography–CT. AJR 2002; 179:477–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Belhocine.

Additional information

T. Belhocine and D. Blockmans contributed equally to this review article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belhocine, T., Blockmans, D., Hustinx, R. et al. Imaging of large vessel vasculitis with 18FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 30, 1305–1313 (2003). https://doi.org/10.1007/s00259-003-1209-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1209-y

Keywords

Navigation