Skip to main content

Advertisement

Log in

The role of SPET and PET in monitoring tumour response to therapy

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) and single-photon emission tomography (SPET) are cross-sectional, quantitative functional imaging modalities in routine use in oncology for the initial staging of cancer, the assessment of patients with recurrent or residual disease and, more recently, for monitoring tumour response to therapy. Both PET and SPET can track tumour biological and metabolic changes caused by therapy or by disease progression, which usually precede the anatomical alterations conventionally detected by anatomical imaging methods. These highly sensitive functional imaging modalities have been used for the early assessment of subclinical tumour response, the evaluation of therapy after its completion and the detection of viable recurrent or relapsing tumour. Timely assessment of response to treatment using PET and SPET may result in modifications in treatment planning and individualisation of therapy and may have prognostic value for the long-term outcome. This review attempts to summarise the current data available on the expanding role of SPET and PET, using a variety of tracers, in monitoring tumour response to therapy in a wide range of malignancies, with emphasis on their clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carde P, Koscielny S, Franklin J, Axdorph U, Raemaekers J, Diehl V, Aleman B, Brosteanu O, Hasenclever D, Oberlin O, Bonvin N, Bjorkholm M. Early response to chemotherapy: a surrogate for final outcome of Hodgkin's disease patients that should influence initial treatment length and intensity? Ann Oncol 2002; 13S:86–91.

    Google Scholar 

  2. Therasse P. Measuring the clinical response. What does it mean? Eur J Cancer 2002; 38:1817–1823.

    Article  CAS  PubMed  Google Scholar 

  3. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Glabekke M, van Osterom T, Christian MC, Gwythers TG. New guidelines to evaluate the response to treatment in solid tumors. J Natl Inst Cancer 2000; 92:205–216.

    Article  CAS  Google Scholar 

  4. Keiding S, Munk OL, Schiott KM, Hansen SB. Dynamic 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography of liver tumours without blood sampling. Eur J Nucl Med 2000; 27:407–412.

    Article  CAS  PubMed  Google Scholar 

  5. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJ, Lammertsma AA. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000; 27:731–743.

    Article  CAS  PubMed  Google Scholar 

  6. Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF, Boers M, Twisk JW, Lammertsma AA. Methods to monitor response to chemotherapy in non-small cell lung cancer with18F-FDG PET.J Nucl Med 2002; 43:1304–1309.

    Google Scholar 

  7. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, Price P. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999; 35:1773–1782.

    CAS  PubMed  Google Scholar 

  8. Herholz K, Pietrzyk U, Voges J, Schroder R, Halber M, Treuer H, Sturm V, Heiss WD. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993; 79:853–858.

    CAS  PubMed  Google Scholar 

  9. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoef G, Mortelmans L, Vandenberghe P, De Wolf-Peeters C. [18F]FDG PET monotoring of tumour response to chemotherapy: does [18F]FDG uptake correlate with the viable tumour cell fraction? Eur J Nucl Med 2003. DOI 10.1007/s00259-003-1120-6.

  10. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19:61–77.

    Google Scholar 

  11. Nelson SJ, Huhn S, Vigneron DB, Day MR, Wald LL, Prados M, Chang S, Gutin PH, Sneed PK, Verhey L, Hawkins RA, Dillon WP. Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. J Magn Reson Imaging 1997; 7:1146–1152.

    CAS  PubMed  Google Scholar 

  12. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988; 150:189–197.

    PubMed  Google Scholar 

  13. Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 1988; 69:830–838.

    CAS  PubMed  Google Scholar 

  14. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT. Diagnosis of recurrent brain tumor: value of201Tl SPECT vs 18F-fluorodeoxyglucose PET.AJR Am J Roentgenol 1994; 163:1459–1465.

    CAS  PubMed  Google Scholar 

  15. Kim EE, Chung SK, Haynie TP, et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 1992; 12:269–279.

    CAS  PubMed  Google Scholar 

  16. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998; 19:407–413.

    CAS  PubMed  Google Scholar 

  17. Fischman AJ, Thornton AF, Frosch MP, Swearinger B, Gonzalez RG, Alpert NM. FDG hypermetabolism associated with inflammatory necrotic changes following radiation of meningioma. J Nucl Med 1997; 38:1027–1029.

    CAS  PubMed  Google Scholar 

  18. Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung WK. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol 1993; 33:540–548.

    CAS  PubMed  Google Scholar 

  19. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001; 96:191–197.

    Google Scholar 

  20. Francavilla TL, Miletich RS, Di Chiro G, Patronas NJ, Rizzoli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery 1989; 24:1–5.

    Google Scholar 

  21. De Witte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler D Jr,Hildebrand J, Brotchi J, Goldman S. Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-d-glucose in the low-grade glioma. Neurosurgery 1996; 39:470–476; discussion 476–477.

    CAS  PubMed  Google Scholar 

  22. Maruyama I, Sadato N, Waki A, Tsuchida T, Yoshida M, Fujibayashi Y, Ishii Y, Kubota T, Yonekura Y. Hyperacute changes in glucose metabolism of brain tumors after stereotactic radiosurgery: a PET study. J Nucl Med 1999; 40:1085–1090.

    CAS  PubMed  Google Scholar 

  23. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC. Usefulness of11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET.Eur J Nucl Med Mol Imaging 2002; 29:176–182.

    Article  CAS  PubMed  Google Scholar 

  24. Voges J, Herholz K, Holzer T, Wurker M, Bauer B, Pietrzyk U, Treuer H, Schroder R, Sturm V, Heiss WD.11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds.Stereotact Funct Neurosurg 1997; 69:129–135.

    CAS  PubMed  Google Scholar 

  25. Nuutinen J, Sonninen P, Lehikoinen P, Sutinen E, Valavaara R, Eronen E,Norrgard S, Kulmala J, Teras M, Minn H. Radiotherapy treatment planning and long-term follow-up with [(11)C]methioninePET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 2000; 48:43–52.

    CAS  PubMed  Google Scholar 

  26. Langen KJ, Roosen N, Kuwert T, Herzog H, Kiwit JC, Rota, Kops E, Muzik O, Bock WJ, Feinendegen LE. Early effects of intra-arterial chemotherapy in patients with brain tumours studied with PET: preliminary results. Nucl Med Commun 1989; 10:779–790.

    CAS  PubMed  Google Scholar 

  27. Rozental JM, Cohen JD, Mehta MP, Levine RL, Hanson JM, Nickles RJ. Acute changes in glucose uptake after treatment: the effects of carmustine (BCNU) on human glioblastoma multiforme. J Neurooncol 1993; 15:57–66.

    CAS  PubMed  Google Scholar 

  28. De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994; 74:2836–2842.

    PubMed  Google Scholar 

  29. Brock CS, Young H, O'Reilly SM, Matthews J, Osman S, Evans H, Newlands ES, Price PM. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 2000; 82:608–615.

    Article  CAS  PubMed  Google Scholar 

  30. Vlassenko AG, Thiessen B, Beattie BJ, Malkin MG, Blasberg RG. Evaluation of early response to SU101 target-based therapy in patients with recurrent supratentorial malignant gliomas using FDG PET and Gd-DTPA MRI. J Neurooncol 2000; 46:249–259.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshii Y, Satou M, Yamamoto T, Yamada Y, Hyodo A, Nose T, Ishikawa H, Hatakeyama R. The role of thallium-201 single photon emission tomography in the investigation and characterisation of brain tumours in man and their response to treatment. Eur J Nucl Med 1993; 20:39–45.

    Google Scholar 

  32. Kline JL, Noto RB, Glantz M. Single-photon emission CT in the evaluation of recurrent brain tumor in patients treated with gamma knife radiosurgery or conventional radiationtherapy. AJNR Am J Neuroradiol 1996; 17:1681–1686.

    CAS  PubMed  Google Scholar 

  33. Vallejos V, Balana C, Fraile M, Roussos Y, Capellades J, Cuadras P, Ballester R, Ley A, Arellano A, Rosell R. Use of201Tl SPECT imaging to assess the response to therapy in patients with high-grade gliomas. J Neurooncol 2002; 59:81–90.

    Article  CAS  PubMed  Google Scholar 

  34. Kallen K, Burtscher IM, Holtas S, Ryding E, Rosen I.201Thallium SPECT and 1H-MRS compared with MRI in chemotherapy monitoring of high-grade malignant astrocytomas. J Neurooncol 2000; 46:173–185.

    CAS  PubMed  Google Scholar 

  35. Yokogami K, Kawano H, Moriyama T, Uehara H, Sameshima T, Oku T, Goya T, Wakisaka S, Nagamachi S, Jinnouchi S, Tamura S. Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med 1998; 25:401–409.

    Google Scholar 

  36. Perek N, Koumanov F, Denoyer D, Boudard D, Dubois F. Modulation of the multidrug resistance of glioma by glutathione levels depletion—interaction with Tc-99m-sestamibi and Tc-99m-tetrofosmin. Cancer Biother Radiopharm 2002; 17:291–302.

    Article  CAS  PubMed  Google Scholar 

  37. Maffioli L, Gasparini M, Chiti A, Gramaglia A, Mongioj V, Pozzi A, Bombardieri E. Clinical role of technetium-99m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med 1996; 23:308–311.

    CAS  PubMed  Google Scholar 

  38. Soler C, Beauchesne P, Maatougui K, Schmitt T, Barral FG, Michel D, Dubois F, Brunon J. Technetium-99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 1998; 25:1649–1657.

    CAS  PubMed  Google Scholar 

  39. Yamamoto Y, Nishiyama Y, Toyama Y, Kunishio K, Satoh K, Ohkawa M.99mTc-MIBI and 201Tl SPET in the detection of recurrent brain tumours after radiation therapy. Nucl Med Commun 2002; 23:1183–1190.

    Article  CAS  PubMed  Google Scholar 

  40. Langen KJ, Ziemons K, Kiwit JC, Herzog H, Kuwert T, Bock WJ, Stocklin G, Feinendegen LE, Muller-Gartner HW. 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-l-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997; 38:517–522.

    CAS  PubMed  Google Scholar 

  41. Langen KJ, Roosen N, Coenen HH, Kuikka JT, Kuwert T, Herzog H, Stocklin G, Feinendegen LE. Brain and brain tumor uptake ofl-3-[123I]iodo-alpha-methyl tyrosine: competition with natural l-amino acids. J Nucl Med 1991; 32:1225–1229.

    CAS  PubMed  Google Scholar 

  42. Kuwert T, Woesler B, Morgenroth C, Lerch H, Schafers M, Palkovic S, Matheja P, Brandau W, Wassmann H, Schober O. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 1998; 39:23–27.

    CAS  PubMed  Google Scholar 

  43. Samnick S, Bader JB, Hellwig D, Moringlane JR, Alexander C, Romeike BF, Feiden W, Kirsch CM. Clinical value of iodine-123-alpha-methyl-l-tyrosine single-photon emission tomography in the differential diagnosis of recurrent brain tumor in patients pretreated for glioma at follow-up. J Clin Oncol 2002; 20:396–404.

    Article  PubMed  Google Scholar 

  44. Weber WA, Dick S, Reidl G, Dzewas B, Busch R, Feldmann HJ, Molls M, Lumenta CB, Schwaiger M, Grosu AL. Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 2001; 42:1144–1150.

    CAS  PubMed  Google Scholar 

  45. Floeth FW, Aulich A, Langen KJ, Burger KJ, Bock WJ, Weber F. MR imaging and single-photon emission CT findings after gene therapy for human glioblastoma. AJNR Am J Neuroradiol 2001; 22:1517–1527.

    CAS  PubMed  Google Scholar 

  46. Weber W, Bartenstein P, Gross MW, Kinzel D, Daschner H, Feldmann HJ, Reidel G, Ziegler SI, Lumenta C, Molls M, Schwaiger M. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 1997; 38:802–808.

    CAS  PubMed  Google Scholar 

  47. Bader JB, Samnick S, Moringlane JR, Feiden W, Schaefer A, Kremp S, Kirsch CM. Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and[18F]fluorodeoxyglucose PET in the detection and grading of recurrences inpatients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 1999; 26:144–151.

    CAS  PubMed  Google Scholar 

  48. Grosu AL, Feldmann H, Dick S, Dzewas B, Nieder C, Gumprecht H, Frank A, Schwaiger M, Molls M, Weber WA. Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys 2002; 54:842–854.

    Article  PubMed  Google Scholar 

  49. Zinzani PL, Magagnoli M, Chierichetti F, Zompatori M, Garraffa G, Bendandi M, Gherlinzoni F, Cellini C, Stefoni V, Ferlin G, Tura S. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol 1999; 10:1181–1184.

    Article  CAS  PubMed  Google Scholar 

  50. Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T, Franke WG, Ehninger G. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin's disease and non-Hodgkin's lymphoma. Br J Haematol 2001; 115:793–800.

    Article  CAS  PubMed  Google Scholar 

  51. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, Fillet G Whole-body positron emission tomography using18F-fluorodeoxyglucose for post treatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999; 94:429–433.

    CAS  PubMed  Google Scholar 

  52. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK.18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin's lymphoma. Ann Oncol 2001; 12:29–37.

    PubMed  Google Scholar 

  53. Spaepen K, Stroobants S, Dupont P, Van Steenweghen S, Thomas J, Vandenberghe P, Vanuytsel L, Bormans G, Balzarini J, De Wolf-Peeters C, Mortelmans L, Verhoef G. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin's lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001; 19:414–419.

    CAS  PubMed  Google Scholar 

  54. Zinzani PL, Chierichetti F, Zompatori M, Tani M, Stefoni V, Garraffa G, Albertini P, Alinari L, Ferlin G, Baccarani M, Tura S. Advantages of positron emission tomography (PET) with respect to computed tomography in the follow-up of lymphoma patients with abdominal presentation. Leuk Lymphoma 2002; 43:1239–1243.

    CAS  PubMed  Google Scholar 

  55. Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C, Enne W, Herz M, Nerl C, Garbrecht M, Schwaiger M. Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998; 91:4464–4471.

    CAS  PubMed  Google Scholar 

  56. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, de Groot T, Balzarini J, De Wolf-Peeters C, Mortelmans L, Verhoef G. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Ann Oncol 2002; 13:1356–1363.

    Article  CAS  PubMed  Google Scholar 

  57. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, Fillet G. Persistent tumour18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin's lymphoma. Haematologica 2000; 85:613–618.

    CAS  PubMed  Google Scholar 

  58. Mikhaeel NG, Timothy AR, O'Doherty MJ, Hain S, Maisey MN.18-FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin's lymphoma—comparison with CT. Leuk Lymphoma 2000; 39:543–553.

    CAS  PubMed  Google Scholar 

  59. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin's disease. J Nucl Med 2002; 43:1018–1027.

    PubMed  Google Scholar 

  60. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin's lymphoma to131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med 2000; 41:999–1005.

    CAS  PubMed  Google Scholar 

  61. Carr R, Barrington SF, Madan B, O'Doherty MJ, Saunders CA, van der Walt J, Timothy AR. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 1998; 91:3340–3346.

    PubMed  Google Scholar 

  62. Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus gland studied with18F-FDG PET: age dependency and frequency after chemotherapy. J Nucl Med 2001; 42:591–595.

    CAS  PubMed  Google Scholar 

  63. Sandherr M, von Schilling C, Link T, Stock K, von Bubnoff N, Peschel C, Avril N. Pitfalls in imaging Hodgkin's disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 2001; 12:719–722.

    Article  CAS  PubMed  Google Scholar 

  64. Coiffier B, Gisselbrecht C, Vose JM, Tilly H, Herbrecht R, Bosly A, Armitage JO. Prognostic factors in aggressive malignant lymphomas: description and validation of a prognostic index that could identify patients requiring a more intensive therapy. The Groupe d'Etudes des Lymphomes Agressifs. J Clin Oncol 1991; 9:211–219.

    CAS  PubMed  Google Scholar 

  65. Drossman SR, Schiff RG, Kronfeld GD, McNamara J, Leonidas JC. Lymphoma of the mediastinum and neck: evaluation with Ga-67 imaging and CT correlation. Radiology 1990; 174:171–175.

    CAS  PubMed  Google Scholar 

  66. Kostakoglu L, Yeh SD, Portlock C, Heelan R, Yao TJ, Niedzwiecki D, Larson SM. Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin's disease in the mediastinum. J Nucl Med 1992; 33:345–350.

    CAS  PubMed  Google Scholar 

  67. Gasparini MD, Balzarini L, Castellani MR, Tesoro Tess JD, Maffioli LS, Petrillo R, Ceglia E, Musumeci R, Buraggi GL. Current role of gallium scan and magnetic resonance imaging in the management of mediastinal Hodgkin lymphoma. Cancer 1993; 72:577–582.

    CAS  PubMed  Google Scholar 

  68. Hill M, Cunningham D, MacVicar D, Roldan A, Husband J, McCready R, Mansi J, Milan S, Hickish T. Role of magnetic resonance imaging in predicting relapse in residual masses after treatment of lymphoma. J Clin Oncol 1993; 11:2273–2278.

    CAS  PubMed  Google Scholar 

  69. Abrahamsen AF, Lien HH, Aas M, Winderen M, Hager B, Kvaloy S, Elgjo RF, Nome O. Magnetic resonance imaging and 67gallium scan in mediastinal malignant lymphoma: a prospective pilot study. Ann Oncol 1994; 5:433–436.

    CAS  PubMed  Google Scholar 

  70. Kaplan WD. Residual mass and negative gallium scintigraphy in treated lymphoma: when is the gallium scan really negative? J Nucl Med 1990; 31:369–371.

    Google Scholar 

  71. Gasparini M, Bombardieri E, Castellani M, Tondini C, Maffioli L, Devizzi L,Gerundini P. Gallium-67 scintigraphy evaluation of therapy in non-Hodgkin's lymphoma. J Nucl Med 1998; 39:1586–1590.

    Google Scholar 

  72. Front D, Israel O, Epelbaum R, Ben Haim S, Sapir EE, Jerushalmi J, Kolodny GM, Robinson E. Ga-67 SPECT before and after treatment of lymphoma. Radiology 1990; 175:515–519.

    CAS  PubMed  Google Scholar 

  73. Kostakoglu L, Yeh SD, Portlock C, Heelan R, Yao TJ, Niedzwiecki D, Larson SM. Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin's disease in the mediastinum. J Nucl Med 1992; 33:345–350.

    CAS  PubMed  Google Scholar 

  74. Brenot-Rossi I, Bouabdallah R, Di Stefano D, Bardou VJ, Stoppa AM, Camerlo J, Sauvan R, Gastaut JA, Pasquier J. Hodgkin's disease: prognostic role of gallium scintigraphy after chemotherapy. Eur J Nucl Med 2001; 28:1482–1488.

    CAS  PubMed  Google Scholar 

  75. King SC, Reiman RJ, Prosnitz LR. Prognostic importance of restaging gallium scans following induction chemotherapy for advanced Hodgkin's disease. J Clin Oncol 1994; 12:306–311.

    CAS  PubMed  Google Scholar 

  76. Vose JM, Bierman PJ, Anderson JR, Harrison KA, Dalrymple GV, Byar K, Kessinger, A, Armitage JO. Single-photon emission computed tomography gallium imaging versus computed tomography: predictive value in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1996; 14:2473–2479.

    CAS  PubMed  Google Scholar 

  77. Salloum E, Brandt DS, Caride VJ, Cornelius E, Zelterman D, Schubert W, ManninoT, Cooper DL. Gallium scans in the management of patients with Hodgkin's disease: a study of 101 patients. J Clin Oncol 1997; 15:518–527.

    CAS  PubMed  Google Scholar 

  78. Bogart JA, Chung CT, Mariados NF, Vermont AI, Lemke SM, Grethlein S, Graziano SL. The value of gallium imaging after therapy for Hodgkin's disease. Cancer 1998; 82:754–759.

    Article  CAS  PubMed  Google Scholar 

  79. Janicek M, Kaplan W, Neuberg D, Canellos GP, Shulman LN, Shipp MA. Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin's lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol 1997; 15:1631–1637.

    CAS  PubMed  Google Scholar 

  80. Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A, Gaitini D, Kolodny GM, Israel O. Hodgkin disease: prediction of outcome with67Ga scintigraphy after one cycle of chemotherapy. Radiology 1999; 210:487–491.

    CAS  PubMed  Google Scholar 

  81. Front D, Bar-Shalom R, Mor M, Haim N, Epelbaum R, Frenkel A, Gaitini D, Kolodny GM, Israel O. Aggressive non-Hodgkin lymphoma: early prediction of outcome with67Ga scintigraphy. Radiology 2000; 214:253–257.

    CAS  PubMed  Google Scholar 

  82. Israel O, Mor M, Epelbaum R, Frenkel A, Haim N, Dann EJ, Gaitini D, Bar-Shalom R, Kolodny GM, Front D. Clinical pre-treatment risk factors and Ga-67 scintigraphy early during treatment for prediction of outcome of patients with aggressive non-Hodgkin lymphoma. Cancer 2002; 94:873–878.

    Article  PubMed  Google Scholar 

  83. Hoekstra OS, Ossenkoppele GJ, Golding R, van Lingen A, Visser GW, Teule GJ, Huijgens PC. Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med 1993; 34:1706–1710.

    CAS  PubMed  Google Scholar 

  84. Kostakoglu L, Leonard JP, Coleman Kuji I, M, Vallabhajosula S, Goldsmith SJ. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in staging and follow-up of patients with lymphoma. Blood 1999; 94:84a.

    Google Scholar 

  85. Van Den Bossche B, Lambert B, De Winter F, Kolindou A, Dierckx RA, Noens L, Van De Wiele C.18FDG PET versus high-dose 67Ga scintigraphy for restaging and treatment follow-up of lymphoma patients. Nucl Med Commun 2002; 23:1079–1083.

    Article  PubMed  Google Scholar 

  86. Carter CL, Allen C, Henson DE. Relation of tumour size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989; 63:181–187.

    Google Scholar 

  87. Bonadonna G, Valagussa P, Zucali R, Salvadori B. Primary chemotherapy in surgically resectable breast cancer. CA Cancer J Clin 1995; 45:227–243.

    CAS  PubMed  Google Scholar 

  88. Wang HC, Lo SS. Future prospects of neoadjuvant chemotherapy in treatment of primary breast cancer. Semin Surg Oncol 1996; 12:59–66.

    Article  PubMed  Google Scholar 

  89. Feldman LD, Hortobagyi GN, Buzdar AU, Ames FC, Blumenschein GR. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res 1986; 46:2578–2581.

    CAS  PubMed  Google Scholar 

  90. Yang WT, Lam WW, Cheung H, Suen M, King WW, Metreweli C. Sonographic, magnetic resonance imaging, and mammographic assessments of preoperative size of breast cancer. J Ultrasound Med 1997; 16:791–797.

    CAS  PubMed  Google Scholar 

  91. Heys SD, Eremin JM, Sarkar TK, Hutcheon AW, Ah-See A, Eremin O. Role of multimodality therapy in the management of locally advanced carcinoma of the breast. J Am Coll Surg 1994; 179:493–504.

    CAS  PubMed  Google Scholar 

  92. Avril N, Dose J, Janicke F, Ziegler S, Romer W, Weber W, Herz M, Nathrath W, Graeff H, Schwaiger M. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. J Natl Cancer Inst 1996; 88:1204–1209.

    CAS  PubMed  Google Scholar 

  93. Nieweg OE, Kim EE, Wong WH, Broussard WF, Singletary SE, Hortobagyi GN, Tilbury RS. Positron emission tomography with fluorine-18-deoxyglucose in the detection and staging of breast cancer. Cancer 1993; 71:3920–3925.

    CAS  PubMed  Google Scholar 

  94. Vranjesevic D, Filmont JE, Meta J, Silverman DH, Phelps ME, Rao J, Valk PE, Czernin J. Whole-body (18)F-FDG PET and conventional imaging for predicting outcome in previously treated breast cancer patients. J Nucl Med 2002; 43:325–329.

    PubMed  Google Scholar 

  95. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995; 13:1470–1477.

    CAS  PubMed  Google Scholar 

  96. Gennari A, Donati S, Salvadori B, Giorgetti A, Salvadori PA, Sorace O, Puccini G, Pisani P, Poli M, Dani D, Landucci E, Mariani G, Conte PF Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 2000; 1:156–161; discussion 162–163.

    CAS  PubMed  Google Scholar 

  97. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993; 11:2101–2111.

    CAS  PubMed  Google Scholar 

  98. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, Waikar S, Whitaker T, Ah-See AK, Eremin O, Heys SD, Gilbert FJ, Sharp PF. Positron emission tomography using [(18)F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000; 18:1676−1688.

    CAS  PubMed  Google Scholar 

  99. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M. Positron emission tomography using [(18)F] Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000; 18:1689–1695.

    CAS  PubMed  Google Scholar 

  100. Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ, Wong WH, Hicks KW, Buzdar AU, Podoloff DA. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996; 37:931–938.

    Google Scholar 

  101. Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 2002; 38:375–379.

    Article  CAS  PubMed  Google Scholar 

  102. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ, Schubert EK, Tseng J, Livingston RB. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002; 43:500–509.

    Google Scholar 

  103. Mortimer JE, Dehdashti F, Siegel BA, Katzenellenbogen JA, Fracasso P, Welch MJ. Positron emission tomography with 2-[18F] fluoro-2-deoxy-d-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with oestrogen receptor status and response to systemic therapy. Clin Cancer Res 1996; 2:933–939.

    CAS  PubMed  Google Scholar 

  104. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001; 19:2797–2803.

    CAS  PubMed  Google Scholar 

  105. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996; 37:1551–1556.

    CAS  PubMed  Google Scholar 

  106. Piwnica-Worms D, Rao VV, Kronauge JF, Croop JM. Characterization of multidrug resistance P-glycoprotein transport function with n organotechnetium cation. Biochemistry 1995; 34:12210–12220.

    CAS  PubMed  Google Scholar 

  107. Kostakoglu L, Elahi N, Kiratli P, Ruacan S, Sayek I, Baltali E, Sungur A, Hayran M, Bekdik CF. Clinical validation of the influence of P-glycoprotein on technetium-99m-sestamibi uptake in malignant tumours. J Nucl Med 1997; 38:1003–1008.

    PubMed  Google Scholar 

  108. Del Vecchio S, Ciarmiello A, Potena MI, et al. In vivo detection of multidrug resistant (MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancer. Eur J Nucl Med 1997; 24:150–159.

    PubMed  Google Scholar 

  109. Moretti JL, Azaloux H, Boisseron D, Kouyoumdjian JC, Vilcoq J. Primary breast cancer imaging with technetium-99m sestamibi and its relation with P-glycoprotein overexpression. Eur J Nucl Med 1996; 23:980–986.

    CAS  PubMed  Google Scholar 

  110. Kostakoglu L, Ruacan S, Ergun EL, Sayek I, Elahi N, Bekdik CF. Influence of the heterogeneity of P-glycoprotein expression on technetium-99m-MIBI uptake in breast cancer. J Nucl Med 1998; 39:1021–1026.

    CAS  PubMed  Google Scholar 

  111. Mubashar M, Harrington KJ, Chaudhary KS, Lalani el-N, Stamp GW, Sinnett D, Glass DM, Peters AM.99mTc-sestamibi imaging in the assessment of toremifene as a modulator of multidrug resistance in patients with breast cancer. J Nucl Med 2002; 43:519–525.

    Google Scholar 

  112. Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Drucker MJ, Livingston RB. Monitoring the response of patients with locally advanced breast carcinoma to neoadjuvant chemotherapy using [technetium 99m]-sestamibi scintimammography. Cancer 1999; 85:2410–2423.

    Article  CAS  PubMed  Google Scholar 

  113. Goldstein LJ, Galski H, Fojo A, et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 1989; 81:116–124.

    CAS  PubMed  Google Scholar 

  114. Ciarmiello A, Del Vecchio S, Silvestro P, Potena MI, Carriero MV, Thomas R, Botti G, D'Aiuto G, Salvatore M. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 1998; 16:1677–1683.

    CAS  PubMed  Google Scholar 

  115. Takamura Y, Miyoshi Y, Taguchi T, Noguchi S. Prediction of chemotherapeutic response by technetium 99m-MIBI scintigraphy in breast carcinoma patients. Cancer 2001; 92:232–239.

    Article  CAS  PubMed  Google Scholar 

  116. Cayre A, Cachin F, Maublant J, Mestas D, Feillel V, Ferriere JP, Kwiaktowski F, Chevillard S, Finat-Duclos F, Verrelle P, Penault-Llorca F. Single static view99mTc-sestamibi scintimammography predicts response to neoadjuvant chemotherapy and is related to MDR expression. Int J Oncol 2002; 20:1049–1055.

    Google Scholar 

  117. Sciuto R, Pasqualoni R, Bergomi S, Petrilli G, Vici P, Belli F, Botti C, Mottolese M, Maini CL. Prognostic value of (99m)Tc-sestamibi washout in predicting response of locally advanced breast cancer to neoadjuvant chemotherapy. J Nucl Med 2002; 43:745–751.

    Google Scholar 

  118. Tiling R, Linke R, Untch M, Richter A, Fieber S, Brinkbaumer K, Tatsch K, Hahn K.18F-FDG PET and 99mTc-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 2001; 28:711–720.

    Google Scholar 

  119. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin 1999; 49:8–31.

    CAS  PubMed  Google Scholar 

  120. Martini N, Kris MG, Flehinger BJ, Gralla RJ, Bains MS, Burt ME, Heelan R, McCormack PM, Pisters KM, Rigas JR. Preoperative chemotherapy for stage IIIa (N2) lung cancer: the Sloan-Kettering experience with 136 patients. Ann Thorac Surg 1993; 55:1365–1373; discussion 1373–1374.

    CAS  PubMed  Google Scholar 

  121. Elias AD, Skarin AT, Leong T, Mentzer S, Strauss G, Lynch T, Shulman L, JacobsC, Abner A, Baldini EH, Frei E 3rd, Sugarbaker DJ. Neoadjuvant therapy for surgically staged IIIA N2 non-small cell lung cancer (NSCLC). Lung Cancer 1997; 17:147–161.

    Article  CAS  PubMed  Google Scholar 

  122. Lee KS, Shim YM, Han J, Kim J, Ahn YC, Park K, Jung KJ. Primary tumors and mediastinal lymph nodes after neoadjuvant concurrent chemoradiotherapy of lung cancer: serial CT findings with pathologic correlation. J Comput Assist Tomogr 2000; 24:35–40.

    Article  CAS  PubMed  Google Scholar 

  123. Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koeter GH, Fidler V, Pruim J, Groen HJ. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000; 343:254–261.

    PubMed  Google Scholar 

  124. Gupta NC, Graeber GM, Bishop HA. Comparative efficacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (<1 cm), intermediate (1 to 3 cm), and large (>3 cm) lymph node lesions. Chest 2000; 117:773–778.

    CAS  PubMed  Google Scholar 

  125. Abe Y, Matsuzawa T, Fujiwara T, et al. Clinical assessment of therapeutic effects on cancer using18F-2-fluoro-2-deoxy-d-glucose and positron emission tomography: preliminary study of lung cancer. Int J Radiat Oncol Biol Phys 1990; 19:1005–1010.

    Google Scholar 

  126. Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Yoshikai T, Fukumura T, Jingu K, Masuda K. Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucoseand positron emission tomography. J Nucl Med 1991; 32:1655–1660.

    Google Scholar 

  127. Hebert ME, Lowe VJ, Hoffman JM, Patz EF, Anscher MS. Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am J Clin Oncol 1996; 19:416–421.

    Google Scholar 

  128. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, Verbeken EK, Deneffe GJ, Mortelmans LA, Demedts MG. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: an analysis of 125 cases. Leuven Lung Cancer Group J Clin Oncol 1999; 17:3201–3206.

    Google Scholar 

  129. Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, Rigo P, Bartsch P. Value of FDG-PET in detecting residual or recurrent non small cell lung cancer Eur Respir J 1999; 14:1376–1380.

    Article  CAS  Google Scholar 

  130. Patz EF Jr, Connolly J, Herndon J. Prognostic value of thoracic FDG PET imaging after treatment for non-small cell lung cancer. AJR Am J Roentgenol 2000; 174:769–774.

    PubMed  Google Scholar 

  131. Akhurst T, Downey RJ, Ginsberg MS, Gonen M, Bains M, Korst R, Ginsberg RJ, RuschVW, Larson SM. An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg 2002; 73:259–264; discussion 264–266.

    Article  PubMed  Google Scholar 

  132. Ryu JS, Choi NC, Fischman AJ, Lynch TJ, Mathisen DJ. FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 2002; 35:179–187.

    Article  PubMed  Google Scholar 

  133. Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AK, Yorke ED. Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med. 2000; 27:861–866.

    Google Scholar 

  134. Ceriani L, Giovanella L, Bandera M, Beghe B, Ortelli M, Roncari G. Semi-quantitative assessment of99Tcm-sestamibi uptake in lung cancer: relationship with clinical response to chemotherapy. Nucl Med Commun 1997; 18:1087–1097.

    PubMed  Google Scholar 

  135. Sasaki M, Kuwabara Y, Ichiya Y, Yoshida T, Nakagawa M, Soeda H, Sugio K, Maehara Y, Masuda K. Prediction of the chemosensitivity of lung cancer by99mTc-hexakis-2-methoxyisobutyl isonitrile SPECT. J Nucl Med 1999; 40:1778–1783.

    PubMed  Google Scholar 

  136. Nishiyama Y, Yamamoto Y, Fukunaga K, Kiuchi T, Satoh K, Takashima H, Ohkawa M, Tanabe M. Evaluation of radiotherapeutic response in non-small cell lung cancer patients by technetium-99m MIBT and thallium-201 chloride SPET. Eur J Nucl Med 2000; 27:536–541.

    CAS  PubMed  Google Scholar 

  137. Koukourakis MI, Koukouraki S, Giatromanolaki A, Skarlatos J, Georgoulias V, Karkavitsas N. Non-small cell lung cancer functional imaging: increased hexakis-2-methoxy-isobutyl-isonitrile tumor clearance correlates with resistance to cytotoxic treatment. Clin Cancer Res 1997; 3:749–754.

    CAS  PubMed  Google Scholar 

  138. Yuksel M, Cermik F, Doganay L, Karlikaya C, Cakir E, Salan A, Berkarda S.99mTc-MIBI SPET in non-small cell lung cancer in relationship with Pgp and prognosis. Eur J Nucl Med Mol Imaging 2002; 29:876–881.

    Google Scholar 

  139. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, Romahn J, van Kaick G. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy J Nucl Med 1991; 32:1485–1490.

    CAS  Google Scholar 

  140. Guillem JG, Puig-La Calle J Jr, Akhurst T, Tickoo S, Ruo L, Minsky BD, Gollub MJ, Klimstra DS, Mazumdar M, Paty PB, Macapinlac H, Yeung H, Saltz L, Finn RD, Erdi Y, Humm J, Cohen AM, Larson S. Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18-fluorodeoxyglucose positron emission tomography. Dis Colon Rectum 2000; 43:18–24.

    CAS  PubMed  Google Scholar 

  141. Oku S, Nakagawa K, Momose T, Abe A, Watanabe T, Ohtomo K. FDG-PET after radiotherapy is a good prognostic indicator of rectal cancer. Ann Nucl Med 2002; 16:409–416.

    PubMed  Google Scholar 

  142. Findlay M, Young H, Cunningham D, Iveson A, Cronin B, Hickish T, Pratt B, Husband J, Flower M, Ott R. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996; 14:700–708.

    CAS  PubMed  Google Scholar 

  143. Bender H, Bangard N, Metten N, Bangard M, Mezger J, Schomburg A, Biersack HJ. Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma 1999; 18:87–91.

    CAS  PubMed  Google Scholar 

  144. Vitola JV, Delbeke D, Meranze SG, Mazer MJ, Pinson CW. Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer 1996; 78:2039–2042.

    Article  PubMed  Google Scholar 

  145. Langenhoff BS, Oyen WJ, Jager GJ, Strijk SP, Wobbes T, Corstens FH, RuersTJ. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 2002; 20:4453–4458.

    Article  CAS  PubMed  Google Scholar 

  146. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 2003; 28:192–197.

    Article  PubMed  Google Scholar 

  147. Harte RJ, Matthews JC, O'Reilly SM, Price PM. Sources of error in tissue and tumor measurements of 5-[18F]fluorouracil. J Nucl Med 1998; 39:1370–1376.

    CAS  PubMed  Google Scholar 

  148. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, Hohenberger P, Mohler M, Oberdorfer F, van Kaick G. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998; 39:1197–1202.

    CAS  PubMed  Google Scholar 

  149. Donohue JP, Leviovitch I, Foster RS, Baniel J, Tognoni P. Integration of surgery and systemic therapy: results and principles of integration. Semin Urol Oncol 1998; 16:65–71.

    CAS  PubMed  Google Scholar 

  150. Aprikian AG, Herr HW, Bajorin DF, Bosl GJ. Resection of postchemotherapy residual masses and limited retroperitoneal lymphadenectomy in patients with metastatic testicular nonseminomatous germ cell tumors. Cancer 1994; 74:1329–1334.

    CAS  PubMed  Google Scholar 

  151. Stephens AW, Gonin R, Hutchins GD, Einhorn LH. Positron emission tomography evaluation of residual radiographic abnormalities in postchemotherapy germ cell tumor patients. J Clin Oncol 1996; 14:1637–1641.

    CAS  PubMed  Google Scholar 

  152. Spermon JR, De Geus-Oei LF, Kiemeney LA, Witjes JA, Oyen WJ. The role of (18)fluoro-2-deoxyglucose positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int 2002; 89:549–556.

    Article  CAS  PubMed  Google Scholar 

  153. Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Bares R, Claussen CD, Kanz L, Bokemeyer C. Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. Cancer 2002; 94:2353–2362.

    Article  PubMed  Google Scholar 

  154. Hain SF, O'Doherty MJ, Timothy AR, Leslie MD, Harper PG, Huddart RA. Fluorodeoxyglucose positron emission tomography in the evaluation of germ cell tumours at relapse. Br J Cancer 2000; 83:863–869.

    Article  CAS  PubMed  Google Scholar 

  155. Cremerius U, Effert PJ, Adam G, Sabri O, Zimmy M, Wagenknecht G, Jakse G, Buell U. FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med 1998; 39:815–822.

    Google Scholar 

  156. Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 1999; 211:249–256.

    CAS  PubMed  Google Scholar 

  157. Bajorin DF, Herr H, Motzer RJ, Bosl GJ. Current perspectives on the role of adjunctive surgery in combined modality treatment for patients with germ cell tumors. Semin Oncol 1992; 19:148–158.

    CAS  Google Scholar 

  158. Puc HS, Heelan R, Mazumdar M, Herr H, Scheinfeld J, Vlamis V, Bajorin DF, Bosl GJ, Mencel P, Motzer RJ. Management of residual mass in advanced seminoma: results and recommendations from the Memorial Sloan-Kettering Cancer Center. J Clin Oncol 1996; 14:454–460.

    CAS  PubMed  Google Scholar 

  159. Ganjoo KN, Chan RJ, Sharma M, Einhorn LH. Positron emission tomography scans in the evaluation of post chemotherapy residual masses in patients with seminoma. J Clin Oncol 1999; 17:3457–3460.

    CAS  PubMed  Google Scholar 

  160. De Santis M, Bokemeyer C, Becherer A, Stoiber F, Oechsle K, Kletter K, Dohmen BM, Dittrich C, Pont J. Predictive impact of 2-18fluoro-2-deoxy-d-glucose positron emission tomography for residual postchemotherapy masses in patients with bulky seminoma. Clin Oncol 2001; 19:3740–3744.

    PubMed  Google Scholar 

  161. Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Claussen CD, Bares R, Kanz L. Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer 2002; 86:506–511.

    Article  PubMed  Google Scholar 

  162. Minn H, Lapela M, Klemi PJ, Grenman R, Leskinen S, Lindholm P, Bergman J, Eronen E, Haaparanta M, Joensuu H. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997; 38:1907–1911.

    CAS  PubMed  Google Scholar 

  163. Rege S, Safa AA, Chaiken L, Hoh C, Juillard G, Withers HR. Positron emission tomography: an independent indicator of radiocurability in head and neck carcinomas. Am J Clin Oncol 2000; 23:164–169.

    Google Scholar 

  164. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, Yonekura. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 2003; 30:63–71.

    Article  CAS  PubMed  Google Scholar 

  165. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003; 97:1015–1024.

    Article  CAS  PubMed  Google Scholar 

  166. Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, El-Ghazi el A, Lehmann W, Slosman DO. Standardized uptake value of 2-[(18)F] fluoro-2-deoxy-d-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002; 20:1398–1404.

    Article  CAS  PubMed  Google Scholar 

  167. Lowe VJ, Dunphy FR, Varvares M, Kim H, Wittry M, Dunphy CH, Dunleavy T, McDonough E, Minster J, Fletcher JW, Boyd JH. Evaluation of chemotherapy response in patients with advanced head and neck cancer using [F-18]fluorodeoxyglucose positron emission tomography. Head Neck 1997; 19:666–674.

    Article  CAS  PubMed  Google Scholar 

  168. Dalsaso TA, Lowe VJ, Dunphy FR, Martin DS, Boyd JH, Stack BC. FDG-PET and CT in evaluation of chemotherapy in advanced head and neck cancer. Clin Positron Imaging 2000; 3:1–5.

    Article  PubMed  Google Scholar 

  169. Mitsuhashi N, Hayakawa K, Hasegawa M, Furuta M, Katano S, Sakurai H, Akimoto T, Takahashi T, Nasu S, Niibe H. Clinical FDG-PET in diagnosis and evaluation of radiation response of patients with nasopharyngeal tumor. Anticancer Res 1998; 18:2827–2832.

    CAS  PubMed  Google Scholar 

  170. Berlangieri SU, Brizel DM, Scher RL, Schifter T, Hawk TC, Hamblen S, Coleman RE, Hoffman JM. Pilot study of positron emission tomography in patients with advanced head and neck cancer receiving radiotherapy and chemotherapy. Head Neck 1994; 16:340–346.

    CAS  PubMed  Google Scholar 

  171. Greven KM, Williams DW 3rd, McGuirt WF Sr, Harkness BA, D'Agostino RB Jr, Keyes JW Jr, Watson NE Jr. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 2001; 23:942–946.

    Article  CAS  PubMed  Google Scholar 

  172. Brun E, Kjellen E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, Perfekt R, Wennerberg J, Strand SE. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002; 24:127–135.

    Article  PubMed  Google Scholar 

  173. Anzai Y, Carroll WR, Quint DJ, Bradford CR, Minoshima S, Wolf GT, Wahl RL. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-d-glucose PET and MR imaging diagnoses. Radiology 1996; 200:135–141.

    CAS  PubMed  Google Scholar 

  174. Rege S, Maass A, Chaiken L, Hoh CK, Choi Y, Lufkin R, Anzai Y, Juillard G, Maddahi J, Phelps ME. Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers. Cancer 1994; 73:3047–3058.

    CAS  PubMed  Google Scholar 

  175. McGuirt WF, Williams DW 3rd, Keyes JW Jr, Greven KM, Watson NE Jr, Geisinger KR, Cappellari JO. A comparative diagnostic study of head and neck nodal metastases using positron emission tomography. Laryngoscope 1995; 105:373–375.

    Google Scholar 

  176. Tsai MH, Shiau YC, Kao CH, Shen YY, Lin CC, Lee CC. Detection of recurrent nasopharyngeal carcinomas with positron emission tomography using 18-fluoro-2-deoxyglucose in patients with indeterminate magnetic resonance imaging findings after radiotherapy. J Cancer Res Clin Oncol 2002; 128:279–282.

    Article  CAS  PubMed  Google Scholar 

  177. Farber LA, Benard F, Machtay M, Smith RJ, Weber RS, Weinstein GS, Chalian AA, Alavi A, Rosenthal DI. Detection of recurrent head and neck squamous cell carcinomas after radiation therapy with 2-18F-fluoro-2-deoxy-d-glucose positron emission tomography. Laryngoscope 1999; 109:970–975.

    CAS  PubMed  Google Scholar 

  178. Fischbein NJ, Assar OS, Caputo GR, Kaplan MJ, Singer MI, Price DC, Dillon WP, Hawkins RA. Clinical utility of positron emission tomography with18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. AJNR Am J Neuroradiol 1998; 19:1189–1196.

    CAS  PubMed  Google Scholar 

  179. Wong RJ, Lin DT, Schoder H, Patel SG, Gonen M, Wolden S, Pfister DG, Shah JP, Larson SM, Kraus DH. Diagnostic and prognostic value of [18F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002; 20:4199–4208.

    Article  CAS  PubMed  Google Scholar 

  180. Lapela M, Eigtved A, Jyrkkio S, Grenman R, Kurki T, Lindholm P, Nuutinen J, Sutinen E, Solin O, Bjornskov I, Bretlau P, Friberg L, Holm S, Jensen M, Sand Hansen H, Minn H. Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer. Eur J Cancer 2000; 36:858–867.

    CAS  PubMed  Google Scholar 

  181. Anzai Y, Minoshima S, Wolf GT, Wahl RL. Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology 1999; 212:285–290.

    CAS  PubMed  Google Scholar 

  182. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, Alavi A. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999; 26:1345–1348.

    CAS  PubMed  Google Scholar 

  183. Kostakoglu L, Uysal Y, Ozyar E, Elahi N, Hayran M, Uzal D, Demirkazik FB, Kars A, Ugur O, Atahan L, Bekdik CF. Pre and post therapy thallium 201 and technetium-99m-sestamibi SPECT in nasopharyngeal carcinoma. J Nucl Med 1996; 37:1956–1962.

    Google Scholar 

  184. Mukherji SK, Gapany M, Phillips D, Neelon B, O'Brien S, McCartney W, Buejenovich S, Parekh JS, Noordzij JP, Castillo M. Thallium-201 single-photon emission CT versus CT for the detection of recurrent squamous cell carcinoma of the head and neck. AJNR Am J Neuroradiol 1999; 20:1215–1220.

    CAS  PubMed  Google Scholar 

  185. Kao CH, Shiau YC, Shen YY, Yen RF. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with technetium-99m methoxyisobutylisonitrile single photon emission computed tomography and computed tomography: comparison with 18-fluoro-2-deoxyglucose positron emission tomography. Cancer 2002; 94:1981–1986.

    Article  PubMed  Google Scholar 

  186. Nagamachi S, Jinnouchi S, Flores LG 2nd, Nakahara H, Ono S, Ohnishi T, Futami S, Watanabe K. The use of201Tl SPET to predict the response to radiotherapy in patients with head and neck cancer. Nucl Med Commun 1996; 17:935–942.

    CAS  PubMed  Google Scholar 

  187. Mukherji SK, Gapany M, Neelon B, McCartney W. Evaluation of201T1 SPECT for predicting early treatment response in patients with squamous cell carcinoma of the extracranial head and neck treated with nonsurgical organ preservation therapy: initial results. J Comput Assist Tomogr 2000; 24:146–151.

    Google Scholar 

  188. Kostakoglu L, Uysal U, Ozyar E, Hayran M, Uzal D, Demirkazik FB, Kars A, Atahan L, Bekdik CF. Monitoring response to therapy with thallium-201 and technetium-99m-sestamibi SPECT in nasopharyngeal carcinoma. J Nucl Med 1997; 38:1009–1014.

    CAS  PubMed  Google Scholar 

  189. Lam KY, Law S, Ma LT, Ong SK, Wong J. Pre-operative chemotherapy for squamous cell carcinoma of the oesophagus: do histological assessment and p53 overexpression predict chemo-responsiveness? Eur J Cancer 1997; 33:1221–1225.

    Article  CAS  PubMed  Google Scholar 

  190. Couper GW, McAteer D, Wallis F, Norton M, Welch A, Nicolson M, Park KG. Detection of response to chemotherapy using positron emission tomography in patients with oesophageal and gastric cancer. Br J Surg 1998; 85:1403–1406.

    Article  CAS  PubMed  Google Scholar 

  191. Flamen P, Van Cutsem E, Lerut A, Cambier JP, Haustermans K, Bormans G, DeLeyn P, Van Raemdonck D, De Wever W, Ectors N, Maes A, Mortelmans L. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol 2002; 13:361–368.

    Article  CAS  PubMed  Google Scholar 

  192. Brucher BL, Weber W, Bauer M, Fink U, Avril N, Stein HJ, Werner M, Zimmerman F, Siewert JR, Schwaiger M. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001; 233:300–309.

    PubMed  Google Scholar 

  193. Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril E, Meisetschlager G, Busch R, Siewert JR, Schwaiger M, Fink U. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001; 19:3058–3065.

    CAS  PubMed  Google Scholar 

  194. Downey RJ, Akhurst T, Ilson D, Ginsberg R, Bains MS, Gonen M, Koong H, Gollub M, Minsky BD, Zakowski M, Turnbull A, Larson SM, Rusch V. Whole body18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 2003; 21:428–432.

    Article  PubMed  Google Scholar 

  195. Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: a critical review. J Clin Oncol 1994; 12:423–431.

    CAS  PubMed  Google Scholar 

  196. Wellings RM, Davies AM, Pynsent PB, Carter SR, Grimer RJ. The value of computed tomographic measurements in osteosarcoma as a predictor of response to adjuvant chemotherapy. Clin Radiol 1994; 49:19–23.

    CAS  PubMed  Google Scholar 

  197. Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, Hogendoorn PC. Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol 1995; 50:384–390.

    CAS  PubMed  Google Scholar 

  198. Murphy WA Jr. Imaging bone tumors in the 1990s. Cancer 1991; 67:1169–1176.

    PubMed  Google Scholar 

  199. Ramanna L, Waxman A, Binney G, Waxman S, Mirra J, Rosen G. Thallium-201 scintigraphy in bone sarcoma: comparison with gallium-67 and technetium-MDP in the evaluation of chemotherapeutic response. J Nucl Med 1990; 31:567–572.

    CAS  PubMed  Google Scholar 

  200. Garcia R, Kim EE, Wong FC, Korkmaz M, Wong WH, Yang DJ, Podoloff DA. Comparison of fluorine-18-FDG PET and technetium-99m-MIBI SPECT in valuation of musculoskeletal sarcomas. J Nucl Med 1996; 37:1476–1479.

    CAS  PubMed  Google Scholar 

  201. Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar MR, Keppler P, Kotzerke J, Guhlmann A, Delling G, Reske SN. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999; 40:1637–1643.

    CAS  PubMed  Google Scholar 

  202. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18-FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 2000; 25:874–881.

    Article  CAS  PubMed  Google Scholar 

  203. Jones DN, McCowage GB, Sostman HD, Brizel DM, Layfield L, Charles HC, Dewhirst MW, Prescott DM, Friedman HS, Harrelson JM, Scully SP, Coleman RE. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 1996; 37:1438–1444.

    Google Scholar 

  204. van Ginkel RJ, Hoekstra HJ, Pruim J, Nieweg OE, Molenaar WM, Paans AM, Willemsen AT, Vaalburg W, Koops HS. FDG-PET to evaluate response to hyperthermic isolated limb perfusion for locally advanced soft-tissue sarcoma. J Nucl Med 1996; 37:984–990.

    Google Scholar 

  205. Nair N, Ali A, Green AA, Lamonica G, Alibazoglu H, Alibazoglu B, Hollinger EF, Ahmed K. Response of osteosarcoma to chemotherapy. Evaluation with F-18 FDG-PET scans. Clin Positron Imaging 2000; 3:79–83.

    Article  PubMed  Google Scholar 

  206. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by[F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 2002; 94:3277–3284.

    Article  CAS  PubMed  Google Scholar 

  207. Stroobants S, Goeminn J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, Martens M, van den Borne B, Cole P, Sciot R, Dumez H, Silberman S, Mortelmans L, van Oosterom A.18FDG-positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003. DOI 10.1016/S0959–8049(03)00073-X.

  208. Bredella MA, Caputo GR, Steinbach LS. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol 2002; 179:1145–1150.

    PubMed  Google Scholar 

  209. Rosen G, Loren GJ, Brien EW, Ramana L, Waxman A, Lowenbraun S, Eckardt JJ, Eilber F, Menendez L, Mirra JM. Serial thallium-201 scintigraphy in osteosarcoma. Correlation with tumor necrosis after preoperative chemotherapy. Clin Orthop 1993; 293:302–306.

    PubMed  Google Scholar 

  210. Ohtomo K, Terui S, Yokoyama R, Abe H, Terauchi T, Maeda G, Beppu Y, Fukuma H. Thallium-201 scintigraphy to assess effect of chemotherapy in osteosarcoma. J Nucl Med 1996; 37:1444–1448.

    CAS  PubMed  Google Scholar 

  211. Imbriaco M, Yeh SD, Yeung H, Zhang JJ, Healey JH, Meyers P, Huvos AG, Larson SM. Thallium-201 scintigraphy for the evaluation of tumor response to preoperative chemotherapy in patients with osteosarcoma. Cancer 1997; 80:1507–1512.

    Article  CAS  PubMed  Google Scholar 

  212. Kunisada T, Ozaki T, Kawai A, Sugihara S, Taguchi K, Inoue H. Imaging assessment of the responses of osteosarcoma patients to preoperative chemotherapy: angiography compared with thallium-201 scintigraphy Cancer 1999; 86:949–956.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chariklia Giannopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulou, C. The role of SPET and PET in monitoring tumour response to therapy. Eur J Nucl Med Mol Imaging 30, 1173–1200 (2003). https://doi.org/10.1007/s00259-003-1208-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1208-z

Keywords

Navigation