Skip to main content
Log in

Recent advances using green and red fluorescent protein variants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fluorescent proteins have proven to be excellent tools for live-cell imaging. In addition to green fluorescent protein (GFP) and its variants, recent progress has led to the development of monomeric red fluorescent proteins (mRFPs) that show improved properties with respect to maturation, brightness, and the monomeric state. This review considers green and red spectral variants, their paired use for live-cell imaging in vivo, in vitro, and in fluorescence resonance energy transfer (FRET) studies, in addition to other recent “two-color” advances including photoswitching and bimolecular fluorescence complementation (BiFC). It will be seen that green and red fluorescent proteins now exist with nearly ideal properties for dual-color microscopy and FRET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson KI, Sanderson J, Gerwig S, Peychl J (2006) A new configuration of the Zeiss LSM 510 for simultaneous optical separation of green and red fluorescent protein pairs. Cytometry A 69:920–929

    PubMed  Google Scholar 

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99:12651–12656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    CAS  PubMed  Google Scholar 

  • Andresen M et al (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci U S A 102:13070–13074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aramaki S, Hatta K (2006) Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn 235:2192–2199

    CAS  PubMed  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97:11984–11989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    CAS  PubMed  Google Scholar 

  • Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    CAS  PubMed  Google Scholar 

  • Brejc K et al (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A 94:2306–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell RE et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    CAS  PubMed  Google Scholar 

  • Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A 93:8362–8367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chudakov DM et al (2003) Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol 21:191–194

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22:1435–1439

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    CAS  PubMed  Google Scholar 

  • Chudakov DM, Chepurnykh TV, Belousov VV, Lukyanov S, Lukyanov KA (2006) Fast and precise protein tracking using repeated reversible photoactivation. Traffic 7:1304–1310

    CAS  PubMed  Google Scholar 

  • Cormier MJ, Lee J, Wampler JE (1975) Bioluminescence: recent advances. Annu Rev Biochem 44:255–272

    CAS  PubMed  Google Scholar 

  • Diez S, Gerisch G, Anderson K, Müller-Taubenberger A, Bretschneider T (2005) Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc Natl Acad Sci U S A 102:7601–7606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich PS, Schafer SP, Schwille P (2005) Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level. Biophys J 89:3446–3455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elder AD, Frank JH, Swartling J, Dai X, Kaminski CF (2006) Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources. J Microsc 224:166–180

    CAS  PubMed  Google Scholar 

  • Fischer M, Haase I, Simmeth E, Gerisch G, Müller-Taubenberger A (2004) A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium. FEBS Lett 577:227–232

    CAS  PubMed  Google Scholar 

  • Fischer M, Haase I, Wiesner S, Müller-Taubenberger A (2006) Visualizing cytoskeleton dynamics in mammalian cells using a humanized variant of monomeric red fluorescent protein. FEBS Lett 580:2495–2502

    CAS  PubMed  Google Scholar 

  • Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS (2006) A dark yellow fluorescent protein (YFP)-based resonance energy-accepting chromoprotein (REACh) for Forster resonance energy transfer with GFP. Proc Natl Acad Sci U S A 103:4089–4094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerisch G, Müller-Taubenberger A (2003) GFP-fusion proteins as fluorescent reporters to study organelle and cytoskeleton dynamics in chemotaxis and phagocytosis. Methods Enzymol 361:320–337

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    CAS  PubMed  Google Scholar 

  • Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    CAS  PubMed  Google Scholar 

  • Gurskaya NG et al (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507:16–20

    CAS  PubMed  Google Scholar 

  • Gurskaya NG et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    CAS  PubMed  Google Scholar 

  • Habuchi S et al (2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J Am Chem Soc 127:8977–8984

    CAS  PubMed  Google Scholar 

  • Habuchi S et al (2006) Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci 5:567–576

    CAS  PubMed  Google Scholar 

  • Hadjantonakis AK, Macmaster S, Nagy A (2002) Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol 2:11

    PubMed  PubMed Central  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    CAS  PubMed  Google Scholar 

  • Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci U S A 104:6672–6677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806

    CAS  PubMed  Google Scholar 

  • Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoi H, Mizuno H, Miyawaki A, Tahara T (2006) Competition between energy and proton transfer in ultrafast excited-state dynamics of an oligomeric fluorescent protein red Kaede. J Phys Chem B 110:22853–22860

    CAS  PubMed  Google Scholar 

  • Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    CAS  PubMed  Google Scholar 

  • Jach G, Pesch M, Richter K, Frings S, Uhrig JF (2006) An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat Methods 3:597–600

    CAS  PubMed  Google Scholar 

  • Kao FJ (2004) The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy. Microsc Res Tech 63:175–181

    PubMed  Google Scholar 

  • Keppler A, Arrivoli C, Sironi L, Ellenberg J (2006) Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques 41:167–175

    CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Barr F, Riedel CG, Heckel T, Reichel C (2002) Improved version of the red fluorescent protein (drFP583/DsRed/RFP). Biotechniques 33:592–602

    CAS  PubMed  Google Scholar 

  • Koushik SV, Chen H, Thaler C, Puhl HL 3rd, Vogel SS (2006) Cerulean, Venus, and VenusY67C FRET reference standards. Biophys J 91:L99–L101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremers GJ, Goedhart J, van Munster EB, Gadella TW Jr (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45:6570–6580

    CAS  PubMed  Google Scholar 

  • Link CD et al (2006) Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J Biol Chem 281:1808–1816

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    CAS  PubMed  Google Scholar 

  • Long JZ, Lackan CS, Hadjantonakis AK (2005) Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol 5:20

    PubMed  PubMed Central  Google Scholar 

  • Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37:43–53

    CAS  PubMed  Google Scholar 

  • Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    CAS  PubMed  Google Scholar 

  • McAnaney TB, Park ES, Hanson GT, Remington SJ, Boxer SG (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41:15489–15494

    CAS  PubMed  Google Scholar 

  • Millington M et al (2007) High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127:155–164

    CAS  PubMed  Google Scholar 

  • Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96:2135–2140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol Suppl. 5:S1–S7

    Google Scholar 

  • Mizuno H et al (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058

    CAS  PubMed  Google Scholar 

  • Morell M, Espargaro A, Aviles FX, Ventura S (2007) Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics 7:1023–1036

    CAS  PubMed  Google Scholar 

  • Müller-Taubenberger A et al (2006) Monomeric red fluorescent protein variants used for imaging studies in different species. Eur J Cell Biol 85:1119–1129

    PubMed  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci U S A 102:9156–9159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nienhaus GU et al (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82:351–358

    CAS  PubMed  Google Scholar 

  • Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    CAS  PubMed  Google Scholar 

  • Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  Google Scholar 

  • Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    CAS  PubMed  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    CAS  PubMed  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    CAS  PubMed  Google Scholar 

  • Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7:690–696

    CAS  PubMed  Google Scholar 

  • Peter M et al (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88:1224–1237

    CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    CAS  PubMed  Google Scholar 

  • Quillin ML et al (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44:5774–5787

    CAS  PubMed  Google Scholar 

  • Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721

    CAS  PubMed  Google Scholar 

  • Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    CAS  PubMed  Google Scholar 

  • Rujano MA et al (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4:e417

    PubMed  PubMed Central  Google Scholar 

  • Sato Y et al (2003) Establishment of Alb-DsRed2 transgenic rat for liver regeneration research. Biochem Biophys Res Commun 311:478–481

    CAS  PubMed  Google Scholar 

  • Schafer SP, Dittrich PS, Petrov EP, Schwille P (2006) Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede. Microsc Res Tech 69:210–219

    CAS  PubMed  Google Scholar 

  • Shimozono S, Hosoi H, Mizuno H, Fukano T, Tahara T, Miyawaki A (2006) Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Biochemistry 45:6267–6271

    CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    CAS  PubMed  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    CAS  PubMed  Google Scholar 

  • Shkrob MA et al (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem J 392:649–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souslova EA, Chudakov DM (2006) Photoswitchable cyan fluorescent protein as a FRET donor. Microsc Res Tech 69:207–209

    CAS  PubMed  Google Scholar 

  • Squire A, Verveer PJ, Bastiaens PI (2000) Multiple frequency fluorescence lifetime imaging microscopy. J Microsc 197:136–149

    CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    CAS  PubMed  Google Scholar 

  • Stiel AC et al (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W et al (2007) Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells 25:670–678

    CAS  PubMed  Google Scholar 

  • Thaler C, Vogel SS, Ikeda SR, Chen H (2006) Photobleaching of YFP does not produce a CFP-like species that affects FRET measurements. Nat Methods 3:491

    CAS  PubMed  Google Scholar 

  • Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M (2006) Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc Res Tech 69:933–939

    CAS  PubMed  Google Scholar 

  • Tsai TH et al (2006) Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section. Opt Lett 31:930–932

    CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • Tsuji K et al (2006) Dual-color imaging of nuclear-cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res 66:303–306

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E (2005) Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nat Methods 2:801

    CAS  PubMed  Google Scholar 

  • van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9:37–41

    PubMed  Google Scholar 

  • van Wageningen S, Pennings AH, van der Reijden BA, Boezeman JB, de Lange F, Jansen JH (2006) Isolation of FRET-positive cells using single 408-nm laser flow cytometry. Cytometry A 69:291–298

    PubMed  Google Scholar 

  • Vintersten K et al (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40:241–246

    CAS  PubMed  Google Scholar 

  • Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006(331):re2

  • Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 101:16745–16749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    CAS  PubMed  Google Scholar 

  • Ward WW, Cormier MJ (1979) An energy transfer protein in coelenterate bioluminescence. Characterization of the Renilla green-fluorescent protein. J Biol Chem 254:781–788

    CAS  PubMed  Google Scholar 

  • Wiedenmann J et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101:15905–15910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto N et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256

    CAS  PubMed  Google Scholar 

  • Yamauchi K et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252

    CAS  PubMed  Google Scholar 

  • Yang TT, Cheng L, Kain SR (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res 24:4592–4593

    CAS  PubMed  PubMed Central  Google Scholar 

  • You X, Nguyen AW, Jabaiah A, Sheff MA, Thorn KS, Daugherty PS (2006) Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci U S A 103:18458–18463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yurchenko E, Friedman H, Hay V, Peterson A, Piccirillo CA (2007) Ubiquitous expression of mRFP-1 in vivo by site-directed transgenesis. Transgenic Res 16:29–40

    CAS  PubMed  Google Scholar 

  • Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    CAS  PubMed  Google Scholar 

  • Zhang S, Ma C, Chalfie M (2004) Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119:137–144

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB466 to A. M.-T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Müller-Taubenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Taubenberger, A., Anderson, K.I. Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77, 1–12 (2007). https://doi.org/10.1007/s00253-007-1131-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1131-5

Keywords

Navigation