Skip to main content
Log in

Phage display systems and their applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Screening phage display libraries of proteins and peptides has, for almost two decades, proven to be a powerful technology for selecting polypeptides with desired biological and physicochemical properties from huge molecular libraries. The scope of phage display applications continues to expand. Recent applications and technical improvements driving further developments in the field of phage display are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson H, von Heijne G (1991) A 30-residue-long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc Natl Acad Sci USA 88:9751–9754

    CAS  PubMed  Google Scholar 

  • Ayala M, Balint RF, Fernandez-de-Cossio L, Canaan-Haden JW, Larrick JW, Gavilondo JV (1995) Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli. Biotechniques 18:832–835

    CAS  PubMed  Google Scholar 

  • Baca M, Presta LG, O’Connor SJ, Wells JA (1997) Antibody humanization using monovalent phage display. J Biol Chem 272:10678–10684

    CAS  PubMed  Google Scholar 

  • Baek H, Suk KH, Kim YH, Cha S (2002) An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res 30:e18

    PubMed  PubMed Central  Google Scholar 

  • Barbas CF III, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982

    CAS  PubMed  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260–274

    CAS  PubMed  Google Scholar 

  • Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci USA 96:1898–1903

    CAS  PubMed  Google Scholar 

  • Binz HK, Plückthun A (2005) Engineered proteins as specific binding reagents. Curr Opin Biotechnol 16:459–469

    CAS  PubMed  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426

    CAS  PubMed  Google Scholar 

  • Bothmann H, Plückthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16:376–380

    CAS  PubMed  Google Scholar 

  • Bothmann H, Plückthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    CAS  PubMed  Google Scholar 

  • Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153

    CAS  PubMed  Google Scholar 

  • Brunet E, Chauvin C, Choumet V, Jestin JL (2002) A novel strategy for the functional cloning of enzymes using filamentous phage display: the case of nucleotidyl transferases. Nucleic Acids Res 30:e40

    PubMed  PubMed Central  Google Scholar 

  • Cesaro-Tadic S, Lagos D, Honegger A, Rickard JH, Partridge LJ, Blackburn GM, Plückthun A (2003) Turnover-based in vitro selection and evolution of biocatalysts from a fully synthetic antibody library. Nat Biotechnol 21:679–685

    CAS  PubMed  Google Scholar 

  • Chappel JA, He M, Kang AS (1998) Modulation of antibody display on M13 filamentous phage. J Immunol Methods 221:25–34

    CAS  PubMed  Google Scholar 

  • Crameri R, Suter M (1993) Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production. Gene 137:69–75

    CAS  PubMed  Google Scholar 

  • Crameri R, Jaussi R, Menz G, Blaser K (1994) Display of expression products of cDNA libraries on phage surfaces. A versatile screening system for selective isolation of genes by specific gene-product/ligand interaction. Eur J Biochem 226:53–58

    CAS  PubMed  Google Scholar 

  • Crameri R, Kodzius R, Konthur Z, Lehrach H, Blaser K, Walter G (2001) Tapping allergen repertoires by advanced cloning technologies. Int Arch Allergy Immunol 124:43–47

    CAS  PubMed  Google Scholar 

  • Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 87:6378–6382

    CAS  PubMed  Google Scholar 

  • Davis NG, Boeke JD, Model P (1985) Fine structure of a membrane anchor domain. J Mol Biol 181:111–121

    CAS  PubMed  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100:6115–6120

    CAS  PubMed  Google Scholar 

  • Demartis S, Huber A, Viti F, Lozzi L, Giovannoni L, Neri P, Winter G, Neri D (1999) A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage. J Mol Biol 286:617–633

    CAS  PubMed  Google Scholar 

  • Deng SJ, MacKenzie CR, Sadowska J, Michniewicz J, Young NM, Bundle DR, Narang SA (1994) Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. J Biol Chem 269:9533–9538

    CAS  PubMed  Google Scholar 

  • Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–406

    CAS  PubMed  Google Scholar 

  • Dueñas M, Borrebaeck CA (1994) Clonal selection and amplification of phage displayed antibodies by linking antigen recognition and phage replication. Biotechnology (NY) 12:999–1002

    Google Scholar 

  • Dueñas M, Borrebaeck CA (1995) Novel helper phage design: intergenic region affects the assembly of bacteriophages and the size of antibody libraries. FEMS Microbiol Lett 125:317–321

    PubMed  Google Scholar 

  • Endemann H, Model P (1995) Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 250:496–506

    CAS  PubMed  Google Scholar 

  • Fuh G, Sidhu SS (2000) Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett 480:231–234

    CAS  PubMed  Google Scholar 

  • Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS (2000) Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J Biol Chem 275:21486–21491

    CAS  PubMed  Google Scholar 

  • Fujii I, Fukuyama S, Iwabuchi Y, Tanimura R (1998) Evolving catalytic antibodies in a phage-displayed combinatorial library. Nat Biotechnol 16:463–467

    CAS  PubMed  Google Scholar 

  • Gramatikoff K, Georgiev O, Schaffner W (1994) Direct interaction rescue, a novel filamentous phage technique to study protein–protein interactions. Nucleic Acids Res 22:5761–5762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102:10482–10486

    CAS  PubMed  Google Scholar 

  • Gu H, Yi Q, Bray ST, Riddle DS, Shiau AK, Baker D (1995) A phage display system for studying the sequence determinants of protein folding. Protein Sci 4:1108–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haaparanta T, Huse WD (1995) A combinatorial method for constructing libraries of long peptides displayed by filamentous phage. Mol Divers 1:39–52

    CAS  PubMed  Google Scholar 

  • Hansson LO, Widersten M, Mannervik B (1997) Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions. Biochemistry 36:11252–11260

    CAS  PubMed  Google Scholar 

  • He M, Taussig MJ (2002) Ribosome display: cell-free protein display technology. Brief Funct Genomic Proteomic 1:204–212

    CAS  PubMed  Google Scholar 

  • Heinis C, Huber A, Demartis S, Bertschinger J, Melkko S, Lozzi L, Neri P, Neri D (2001) Selection of catalytically active biotin ligase and trypsin mutants by phage display. Protein Eng 14:1043–1052

    CAS  PubMed  Google Scholar 

  • Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hufton SE, Moerkerk PT, Meulemans EV, de Bruine A, Arends JW, Hoogenboom HR (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231:39–51

    CAS  PubMed  Google Scholar 

  • Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71–96

    CAS  PubMed  Google Scholar 

  • Jackson JR, Sathe G, Rosenberg M, Sweet R (1995) In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta. J Immunol 154:3310–3319

    CAS  PubMed  Google Scholar 

  • Jacobsson K, Frykberg L (1995) Cloning of ligand-binding domains of bacterial receptors by phage display. Biotechniques 18:878–885

    CAS  PubMed  Google Scholar 

  • Jacobsson K, Frykberg L (1998) Gene VIII-based, phage-display vectors for selection against complex mixtures of ligands. Biotechniques 24:294–301

    CAS  PubMed  Google Scholar 

  • Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van dB, I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE (1995) Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (NY) 13:378–382

    CAS  Google Scholar 

  • Jung S, Plückthun A (1997) Improving in vivo folding and stability of a single-chain Fv antibody fragment by loop grafting. Protein Eng 10:959–966

    CAS  PubMed  Google Scholar 

  • Jung S, Arndt KM, Muller KM, Plückthun A (1999) Selectively infective phage (SIP) technology: scope and limitations. J Immunol Methods 231:93–104

    CAS  PubMed  Google Scholar 

  • Kang AS, Barbas CF, Janda KD, Benkovic SJ, Lerner RA (1991) Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci USA 88:4363–4366

    CAS  PubMed  Google Scholar 

  • Kather I, Bippes CA, Schmid FX (2005) A stable disulfide-free gene-3-protein of phage fd generated by in vitro evolution. J Mol Biol 354:666–678

    CAS  PubMed  Google Scholar 

  • Kay BK, Adey NB, He YS, Manfredi JP, Mataragnon AH, Fowlkes DM (1993) An M13 phage library displaying random 38-amino-acid peptides as a source of novel sequences with affinity to selected targets. Gene 128:59–65

    CAS  PubMed  Google Scholar 

  • Kirsch M, Zaman M, Meier D, Dübel S, Hust M (2005) Parameters affecting the display of antibodies on phage. J Immunol Methods 301:173–185

    CAS  PubMed  Google Scholar 

  • Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM (1999) Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 119:265–274

    CAS  PubMed  Google Scholar 

  • Kramer RA, Cox F, van der HM, van der OS, Res PC, Bia J, Logtenberg T, de Kruif J (2003) A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res 31:e59

    PubMed  PubMed Central  Google Scholar 

  • Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201:35–55

    CAS  PubMed  Google Scholar 

  • Krebber A, Burmester J, Plückthun A (1996) Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. Gene 178:71–74

    CAS  PubMed  Google Scholar 

  • Krebber C, Spada S, Desplancq D, Plückthun A (1995) Co-selection of cognate antibody-antigen pairs by selectively-infective phages. FEBS Lett 377:227–231

    CAS  PubMed  Google Scholar 

  • Kretzschmar T, Geiser M (1995) Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage M13. Gene 155:61–65

    CAS  PubMed  Google Scholar 

  • Kristensen P, Winter G (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 3:321–328

    CAS  PubMed  Google Scholar 

  • Lipovsek D, Plückthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67

    CAS  PubMed  Google Scholar 

  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597

    CAS  PubMed  Google Scholar 

  • Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158

    CAS  PubMed  Google Scholar 

  • Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260:1113–1117

    CAS  PubMed  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    CAS  Google Scholar 

  • McLafferty MA, Kent RB, Ladner RC, Markland W (1993) M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128:29–36

    CAS  Google Scholar 

  • Nilsson B, Berman-Marks C, Kuntz ID, Anderson S (1991) Secretion incompetence of bovine pancreatic trypsin inhibitor expressed in Escherichia coli. J Biol Chem 266:2970–2977

    CAS  PubMed  Google Scholar 

  • O’Connell D, Becerril B, Roy-Burman A, Daws M, Marks JD (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol 321:49–56

    PubMed  Google Scholar 

  • Ørum H, Andersen PS, Oster A, Johansen LK, Riise E, Bjornvad M, Svendsen I, Engberg J (1993) Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res 21:4491–4498

    PubMed  PubMed Central  Google Scholar 

  • Palmer T, Berks BC (2003) Moving folded proteins across the bacterial cell membrane. Microbiology 149:547–556

    CAS  PubMed  Google Scholar 

  • Palzkill T, Huang W, Weinstock GM (1998) Mapping protein-ligand interactions using whole genome phage display libraries. Gene 221:79–83

    CAS  PubMed  Google Scholar 

  • Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318

    CAS  Google Scholar 

  • Paschke M, Höhne W (2005) A twin-arginine translocation (Tat)-mediated phage display system. Gene 350:79–88

    CAS  PubMed  Google Scholar 

  • Paschke M, Zahn G, Warsinke A, Höhne W (2001) New series of vectors for phage display and prokaryotic expression of proteins. Biotechniques 30:720–4:726

    CAS  PubMed  Google Scholar 

  • Pedersen H, Holder S, Sutherlin DP, Schwitter U, King DS, Schultz PG (1998) A method for directed evolution and functional cloning of enzymes. Proc Natl Acad Sci USA 95:10523–10528

    CAS  PubMed  Google Scholar 

  • Petrenko VA, Smith GP, Gong X, Quinn T (1996) A library of organic landscapes on filamentous phage. Protein Eng 9:797–801

    CAS  PubMed  Google Scholar 

  • Proba K, Worn A, Honegger A, Plückthun A (1998) Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 275:245–253

    CAS  PubMed  Google Scholar 

  • Rakonjac J, Jovanovic G, Model P (1997) Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene 198:99–103

    CAS  PubMed  Google Scholar 

  • Rhyner C, Weichel M, Fluckiger S, Hemmann S, Kleber-Janke T, Crameri R (2004) Cloning allergens via phage display. Methods 32:212–218

    CAS  PubMed  Google Scholar 

  • Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78

    CAS  PubMed  Google Scholar 

  • Ruan B, Hoskins J, Wang L, Bryan PN (1998) Stabilizing the subtilisin BPN’ pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability? Protein Sci 7:2345–2353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russel M (1995) Moving through the membrane with filamentous phages. Trends Microbiol. 3:223–228

    CAS  PubMed  Google Scholar 

  • Russel M, Kidd S, Kelley MR (1986) An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene 45:333–338

    CAS  PubMed  Google Scholar 

  • Russel M, Model P (1989) Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol 63:3284–3295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlehuber S, Beste G, Skerra A (2000) A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J Mol Biol 297:1105–1120

    CAS  PubMed  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    CAS  Google Scholar 

  • Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63

    CAS  PubMed  Google Scholar 

  • Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16:955–960

    CAS  PubMed  Google Scholar 

  • Skerra A (1989) Funktionelle Expression Antigen-bindender Immunglobulinfragmente in Escherichia coli. (Functional expression of antigen-binding immunoglobulin fragments in Escherichia coli.) Dissertation, Ludwig Maximilians University, Munich

    Google Scholar 

  • Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135

    CAS  PubMed  Google Scholar 

  • Skerra A, Plückthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041

    CAS  PubMed  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    CAS  Google Scholar 

  • Soderlind E, Simonsson AC, Borrebaeck CA (1992) Phage display technology in antibody engineering: design of phagemid vectors and in vitro maturation systems. Immunol Rev 130:109–124

    CAS  PubMed  Google Scholar 

  • Soltes G, Barker H, Marmai K, Pun E, Yuen A, Wiersma EJ (2003) A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. J Immunol Methods 274:233–244

    CAS  PubMed  Google Scholar 

  • Soumillion P, Jespers L, Bouchet M, Marchand-Brynaert J, Sartiaux P, Fastrez J (1994) Phage display of enzymes and in vitro selection for catalytic activity. Appl Biochem Biotechnol 47:175–189

    CAS  PubMed  Google Scholar 

  • Stengele I, Bross P, Garces X, Giray J, Rasched I (1990) Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J Mol Biol 212:143–149

    CAS  PubMed  Google Scholar 

  • Tian F, Tsao ML, Schultz PG (2004) A phage display system with unnatural amino acids. J Am Chem Soc 126:15962–15963

    CAS  PubMed  Google Scholar 

  • van Dongen W, Hagen W, van den Berg W, Veeger C (1988) Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli. FEMS Microbiol Lett 50:5–9

    Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    CAS  PubMed  Google Scholar 

  • Visintin M, Settanni G, Maritan A, Graziosi S, Marks JD, Cattaneo A (2002) The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 317:73–83

    CAS  PubMed  Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    CAS  PubMed  Google Scholar 

  • Weiss GA, Roth TA, Baldi PF, Sidhu SS (2003) Comprehensive mutagenesis of the C-terminal domain of the M13 gene-3 minor coat protein: the requirements for assembly into the bacteriophage particle. J Mol Biol 332:777–782

    CAS  PubMed  Google Scholar 

  • Xia G, Chen L, Sera T, Fa M, Schultz PG, Romesberg FE (2002) Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc Natl Acad Sci USA 99:6597–6602

    CAS  PubMed  Google Scholar 

  • Zahn G, Skerra A, Höhne W (1999) Investigation of a tetracycline-regulated phage display system. Protein Eng 12:1031–1034

    CAS  PubMed  Google Scholar 

  • Zhao H, Arnold FH (1997) Combinatorial protein design: strategies for screening protein libraries. Curr Opin Struct Biol 7:480–485

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Paschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschke, M. Phage display systems and their applications. Appl Microbiol Biotechnol 70, 2–11 (2006). https://doi.org/10.1007/s00253-005-0270-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0270-9

Keywords

Navigation