Skip to main content
Log in

PET imaging in pediatric neuroradiology: current and future applications

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basu S, Zaidi H, Houseni M et al (2007) Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 37:223–239

    PubMed  Google Scholar 

  2. Minn H, Leskinen-Kallio S, Lindholm P et al (1993) [18F]fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Comput Assist Tomogr 17:115–123

    CAS  PubMed  Google Scholar 

  3. Kole A, Nieweg O, Pruim J et al (1997) Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-11C]tyrosine PET. J Nucl Med 38:692–696

    CAS  PubMed  Google Scholar 

  4. Geworski L, Knoop BO, de Wit M et al (2002) Multicenter comparison of calibration and cross calibration of PET scanners. J Nucl Med 43:635–639

    PubMed  Google Scholar 

  5. Westerterp M, Pruim J, Oyen W et al (2007) Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging 34:392–404

    PubMed  Google Scholar 

  6. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20S

    CAS  PubMed  Google Scholar 

  7. Hoekstra CJ, Hoekstra OS, Stroobants SG et al (2002) Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET. J Nucl Med 43:1304–1309

    CAS  PubMed  Google Scholar 

  8. Hoekstra CJ, Paglianiti I, Hoekstra OS et al (2000) Monitoring response to therapy in cancer using [F-18]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 27:731–743

    CAS  PubMed  Google Scholar 

  9. Eary JF, Mankoff DA (1998) Tumor metabolic rates in sarcoma using FDG PET. J Nucl Med 39:250–254

    CAS  PubMed  Google Scholar 

  10. Lowe VJ, DeLong DM, Hoffman JM et al (1995) Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med 36:883–887

    CAS  PubMed  Google Scholar 

  11. Gorospe L, Raman S, Echeveste J et al (2005) Whole-body PET/CT: spectrum of physiological variants, artifacts and interpretative pitfalls in cancer patients. Nucl Med Common 26:671–687

    Google Scholar 

  12. Erdi YE, Nehmeh SA, Pan T et al (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 45:1287–1292

    PubMed  Google Scholar 

  13. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    CAS  PubMed  Google Scholar 

  14. Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children; normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36:1130–1137

    CAS  PubMed  Google Scholar 

  15. Chugani HT (1992) Functional brain imaging in pediatrics. Pediatr Clin North Am 39:777–799

    CAS  PubMed  Google Scholar 

  16. Loessner A, Alavi A, Lewandrowski KU et al (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36:1141–1149

    CAS  PubMed  Google Scholar 

  17. Chawluk JB, Alavi A, Dann R et al (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28:431–437

    CAS  PubMed  Google Scholar 

  18. Miura SA, Shapiro MB, Grady CL (1990) Effects of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res 27:500–504

    CAS  PubMed  Google Scholar 

  19. Koepp MJ, Woermann FG (2005) Imaging structure and function in refractory focal epilepsy. Lancet Neurol 4:42–53

    PubMed  Google Scholar 

  20. Engel J, Brown WJ, Kuhl DE et al (1982) Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 12:518–528

    PubMed  Google Scholar 

  21. Henry TR, Mazziotta JC, Engel J (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50:582–589

    CAS  PubMed  Google Scholar 

  22. Henry TR, Babb TL, Engel J et al (1994) Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 36:925–927

    CAS  PubMed  Google Scholar 

  23. Duncan JD, Moss SD, Bandy DJ et al (1997) Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatr Neurosurg 26:144–156

    CAS  PubMed  Google Scholar 

  24. Theodore WH (1992) MRI, PET, SPECT: interrelations, technical limits, and unanswered questions. Epilepsy Res Suppl 5:127–134

    CAS  PubMed  Google Scholar 

  25. Markand ON, Spencer SS, Anderson AR (1995) SPECT in epilepsy. J Neuroimaging 5(suppl 1):S23–S33

    PubMed  Google Scholar 

  26. Spencer S (1994) The relative contributions of MRI, SPECT, and PET imaging in epilepsy. Epilepsia 35(Suppl. 6):S72–S89

    PubMed  Google Scholar 

  27. Semah F, Picot MC, Adam C et al (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256–1262

    CAS  PubMed  Google Scholar 

  28. Lee DS, Lee SK, Chung J-K et al (1997) Predictive values of F-18-FDG PET and ictal SPECT to find epileptogenic zones in cryptogenic neocortical epilepsies (abstract). J Nucl Med 38:272

    Google Scholar 

  29. Chugani HT, Shields WD, Shewmon DA et al (1990) Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 27:406–413

    CAS  PubMed  Google Scholar 

  30. Swartz BE, Brown C, Mandelkern MA et al (2002) The use of 2-deoxy-2[18F] fluoro-D-glucose (FDG-PET) positron emission tomography in the routine diagnosis of epilepsy. Mol Imaging Biol 4:245–252

    PubMed  Google Scholar 

  31. Debets RM, Sadzot B, van Isselt JW et al (1997) Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry 62:141–150

    CAS  PubMed  Google Scholar 

  32. Ho SS, Berkovic SF, Berlangieri SU et al (1995) Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy. Ann Neurol 37:738–745

    CAS  PubMed  Google Scholar 

  33. O’Brien TJ, Hicks RJ, Ware R et al (2001) The utility of a 3-D, large-field-of-view, PENN-PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 42:1158–1165

    PubMed  Google Scholar 

  34. Muzik O, Chugani DC, Shen C et al (1998) Objective method for localization of cortical asymmetries using positron emission tomography to aid surgical resection of epileptic foci. Comput Aided Surg 3:74–82

    CAS  PubMed  Google Scholar 

  35. Lin TW, de Aburto MA, Dahlbom M et al (2007) Predicting seizure-free status for temporal lobe epilepsy patients undergoing surgery: prognostic value of quantifying maximal metabolic asymmetry extending over a specified proportion of the temporal lobe. J Nucl Med 48:776–782

    PubMed  Google Scholar 

  36. Chugani HT, Shewmon DA, Shields WD et al (1993) Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 34:764–771

    CAS  PubMed  Google Scholar 

  37. Neuroimaging Subcommission of the International League Against Epilepsy (2000) Commission on diagnostic strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia 41:1350–1356

    Google Scholar 

  38. Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET-MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71:1594–1601

    CAS  PubMed  Google Scholar 

  39. Cohen-Gadol AA, Wilhelmi BG, Collignon F et al (2006) Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J Neurosurg 104:513–524

    PubMed  Google Scholar 

  40. Palmini A, Lüders HO (2002) Classification issues in malformations caused by abnormalities of cortical development. Neurosurg Clin N Am 13:1–16 vii

    PubMed  Google Scholar 

  41. Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3):S2–S8

    CAS  PubMed  Google Scholar 

  42. Krsek P, Maton B, Korman B et al (2008) Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol 63:758–769

    PubMed  Google Scholar 

  43. Widdess-Walsh P, Kellinghaus C, Jeha L et al (2005) Electro-clinical and imaging characteristics of focal cortical dysplasia: correlation with pathological subtypes. Epilepsy Res 67:25–33

    PubMed  Google Scholar 

  44. Lawson JA, Birchansky S, Pacheco E et al (2005) Distinct clinicopathologic subtypes of cortical dysplasia of Taylor. Neurology 64:55–61

    CAS  PubMed  Google Scholar 

  45. Olson DM, Chugani HT, Shewmon DA et al (1990) Electrocorticographic confirmation of focal positron emission tomographic abnormalities in children with intractable epilepsy. Epilepsia 31:731–739

    CAS  PubMed  Google Scholar 

  46. Curatolo P, Bombardieri R, Verdecchia M et al (2005) Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J Child Neurol 20:318–325

    PubMed  Google Scholar 

  47. Kalantari BN, Salamon N (2008) Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR 190:W304–W309

    PubMed  Google Scholar 

  48. Koh S, Jayakar P, Dunoyer C et al (2000) Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia 41:1206–1213

    CAS  PubMed  Google Scholar 

  49. Cusmai R, Chiron C, Curatolo P et al (1990) Topographic comparative study of magnetic resonance imaging and electroencephalography in 34 children with tuberous sclerosis. Epilepsia 31:747–755

    CAS  PubMed  Google Scholar 

  50. Chandra PS, Salamon N, Huang J et al (2006) FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 47:1543–1549

    PubMed  Google Scholar 

  51. Lardinois D, Weder W, Hany T et al (2003) Staging of non-small-cell lung cancer with integrated positron emission tomography and computed tomography. N Engl J Med 348:2500–2507

    PubMed  Google Scholar 

  52. Hany TF, Steinhert HC, Goerres GW et al (2002) PET diagnostic accuracy: improvement with in line PET-CT system: initial results. Radiology 225:575–581

    PubMed  Google Scholar 

  53. Antoch G, Freudenberg LS, Stattaus J et al (2002) Whole body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR 179:1555–1560

    PubMed  Google Scholar 

  54. McCarville MB, Christie R, Daw N et al (2005) PET/CT in the evaluation of childhood sarcomas. AJR 184:1293–1304

    PubMed  Google Scholar 

  55. Kaste SC (2004) Issues specific to implementation of PET-CT for pediatric oncology: what we have learned along the way. Pediatr Radiol 34:205–213

    PubMed  Google Scholar 

  56. Shulkin BL (2004) PET imaging in pediatric oncology. Pediatr Radiol 34:199–204

    PubMed  Google Scholar 

  57. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol 34:190–198

    PubMed  Google Scholar 

  58. Kaste SC, Howard SC, McCarville EB et al (2005) 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol 35:141–154

    PubMed  Google Scholar 

  59. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    CAS  PubMed  Google Scholar 

  60. Van Heertum RL, Greenstein EA, Tikofsky RS (2004) 2-deoxy-fluorglucose-PET imaging of the brain: current clinical applications with emphasis on dementia. Semin Nucl Med 34:300–312

    PubMed  Google Scholar 

  61. Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  62. Sasaki M, Kuwabara Y, Toshida T et al (1998) A comparative study of thallium-201 SPECT, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumors. Eur J Nucl Med 25:1261–1269

    CAS  PubMed  Google Scholar 

  63. Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron tomography for brain tumors: comparison of fludeoxyglucose F18and L-methy-C-11-methionine. AJNR 17:345–353

    CAS  PubMed  Google Scholar 

  64. Chung JK, Kim YK, Kim SK et al (2002) Usefulness of C-11-methionine PET in the evaluation of brain lesions that are hypo or isometabolic on F-18-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    CAS  PubMed  Google Scholar 

  65. Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabelled amino acids: basic aspects and clinical application in oncology. J Nucl Med 42:432–445

    CAS  PubMed  Google Scholar 

  66. Spence AM, Muzi M, Mankoff DA et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  67. Kim EE, Chung SK, Hayne TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment change with F-18 FDG PET. Radiographics 12:269–279

    CAS  PubMed  Google Scholar 

  68. Herholz K, Kracht LW, Heiss WD (2003) Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 13:269–271

    CAS  PubMed  Google Scholar 

  69. Galldiks N, Kracht LW, Burghaus L et al (2006) Use of 11C methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33:516–524

    CAS  PubMed  Google Scholar 

  70. Pirotte B, Goldman S, Massager N et al (2004) Comparison of F-18-FDG and C-11-methionine for PET-guided stereotactic brain biopsy of glioma. J Nucl Med 45:1293–1298

    CAS  PubMed  Google Scholar 

  71. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:6904–6911

    Google Scholar 

  72. Williams G, Fahey FH, Treves ST et al (2008) Exploratory evaluation of two-dimensional and three-dimensional methods of FDG PET quantification in pediatric anaplastic astrocytoma: a report from the Pediatric Brain Tumor Consortium (PBTC). Eur J Nucl Med Mol Imaging 35:1651–1658

    PubMed  Google Scholar 

  73. Barentsz JO, Jager GJ, Witjes JA et al (1996) Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT. Eur Radiol 6:129–133

    CAS  PubMed  Google Scholar 

  74. Kent DL, Haynor DR, Longstreth WT Jr et al (1994) The clinical efficacy of magnetic resonance imaging in neuroimaging. Ann Intern Med 120:856–871

    CAS  PubMed  Google Scholar 

  75. Prabhakar R, Haresh KP, Ganesh T et al (2007) Comparison of computed tomography and magnetic resonance based target volume in brain tumors. J Cancer Res Ther 3:121–123

    CAS  PubMed  Google Scholar 

  76. Pichler B, Wehrl H, Kolb A et al (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38:199–208

    PubMed  Google Scholar 

  77. Casey ME, Nutt R (1986) A multicrystal two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Google Scholar 

  78. Yamamoto S, Kuroda K, Senda M (2003) Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci 50:1683–1685

    CAS  Google Scholar 

  79. Slates RB, Farahani K, Shao Y et al (1999) A study of artefacts in simultaneous PET and MR imaging using a prototype MR-compatible pet scanner. Phys Med Biol 44:2015–2027

    CAS  PubMed  Google Scholar 

  80. Catana C, Wu Y, Judenhofer MS et al (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47:1968–1976

    PubMed  Google Scholar 

  81. Pichler BJ, Swann BK, Rochelle J et al (2004) Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 49:4305–4319

    CAS  PubMed  Google Scholar 

  82. Lucas AJ, Hawkes RC, Ansorge RE et al (2006) Development of a combined microPET-MR system. Technol Cancer Res Treat 5:337–341

    CAS  PubMed  Google Scholar 

  83. Lucas A, Hawkes RC, Guerra P et al (2006) Development of a combined micro-PET-MR system. IEEE Nucl Sci Symp Conf Rec 2345–2348

  84. Gilbert KM, Handler WB, Scholl TJ et al (2006) Design of field-cycled magnetic resonance systems for small animal imaging. Phys Med Biol 51:2825–2841

    CAS  PubMed  Google Scholar 

  85. Handler WB, Gilbert KM, Peng H et al (2006) Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system. Phys Med Biol 51:2479–2491

    PubMed  Google Scholar 

  86. Schmand M, Burbar Z, Corbeil JL et al (2007) Brain PET: first human tomography for simultaneous (functional) PET and MR imaging. J Nucl Med Suppl 48(Suppl 2):45P Abstract 151

    Google Scholar 

  87. Schlemmer H-P, Pichler BJ, Wienhard K et al (2007) Simultaneous MR/PET for brain imaging: first patient scans. J Nucl Med Suppl 48(Suppl 2):45P Abstract 152

    Google Scholar 

  88. Muller-Horvat C, Radny P, Eigentler TK et al (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42:342–350

    PubMed  Google Scholar 

  89. Heiss W, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    CAS  PubMed  Google Scholar 

  90. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42:8–12

    PubMed  Google Scholar 

  91. Hammers A, Koepp MJ, Brooks DJ et al (2005) Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 46:944–948

    PubMed  Google Scholar 

  92. Hammers A, Koepp MJ, Richardson MP et al (2003) Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients. Brain 126:1300–1318

    PubMed  Google Scholar 

  93. Tortella FC, Long JB (1985) Endogenous anticonvulsant substance in rat cerebrospinal fluid after a generalized seizure. Science 228:1106–1108

    CAS  PubMed  Google Scholar 

  94. Frost JJ, Mayberg HS, Fisher RS et al (1988) Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 23:231–237

    CAS  PubMed  Google Scholar 

  95. Mayberg HS, Sadzot B, Meltzer CC et al (1991) Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 30:3–11

    CAS  PubMed  Google Scholar 

  96. Madar I, Lesser RP, Krauss G et al (1997) Imaging of delta- and mu-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann Neurol 41:358–367

    CAS  PubMed  Google Scholar 

  97. Hammers A, Asselin MC, Hinz R et al (2007) Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain 130:1009–1016

    PubMed  Google Scholar 

  98. Toczek MT, Carson RE, Lang L et al (2003) PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60:749–756

    CAS  PubMed  Google Scholar 

  99. Teskey GC, Radford KS, Seif I et al (2004) MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis. Epilepsy Res 59:25–34

    CAS  PubMed  Google Scholar 

  100. Louw D, Sutherland GB, Glavin GB et al (1989) A study of monoamine metabolism in human epilepsy. Can J Neurol Sci 16:394–397

    CAS  PubMed  Google Scholar 

  101. Pintor M, Mefford IN, Hutter I et al (1990) The levels of biogenic amines, their metabolites and tyrosine hydroxylase in the human epileptic temporal cortex. Synapse 5:152–156

    CAS  PubMed  Google Scholar 

  102. Trottier S, Evrard B, Vignal JP et al (1996) The serotonergic innervation of the cerebral cortex in man and its changes in focal cortical dysplasia. Epilepsy Res 25:79–106

    CAS  PubMed  Google Scholar 

  103. Theodore WH, Hasler G, Giovacchini G et al (2007) Reduced hippocampal 5HT1A PET receptor binding and depression in temporal lobe epilepsy. Epilepsia 48:1526–1530

    PubMed  Google Scholar 

  104. Diksic M, Nagahiro S, Chaly T et al (1991) Serotonin synthesis rate measured in living dog brain by positron emission tomography. J Neurochem 56:153–162

    CAS  PubMed  Google Scholar 

  105. Chugani DC, Muzik O, Chakraborty P et al (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 28:33–43

    CAS  PubMed  Google Scholar 

  106. Muzik O, Chugani DC, Chakraborty P et al (1997) Analysis of [C-11] alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metab 17:659–669

    CAS  PubMed  Google Scholar 

  107. Chugani DC, Chugani HT, Muzik O et al (1998) Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl- L-tryptophan positron emission tomography. Ann Neurol 44:858–866

    CAS  PubMed  Google Scholar 

  108. Fedi M, Reutens DC, Andermann F et al (2003) alpha-[11C]-methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res 52:203–213

    PubMed  Google Scholar 

  109. Fedi M, Reutens D, Okazawa H et al (2001) Localizing value of alpha-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin. Neurology 57:1629–1636

    CAS  PubMed  Google Scholar 

  110. Juhasz C, Chugani DC, Muzik O et al (2003) Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology 60:960–968

    CAS  PubMed  Google Scholar 

  111. Rosen GD, Burstein D, Galaburda AM (2000) Changes in efferent and afferent connectivity in rats with induced cerebrocortical microgyria. J Comp Neurol 418:423–440

    CAS  PubMed  Google Scholar 

  112. Chugani DC (2004) Serotonin in autism and pediatric epilepsies. Ment Retard Dev Disabil Res Rev 10:112–116

    PubMed  Google Scholar 

  113. Picard F, Bruel D, Servent D et al (2006) Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 129:2047–2060

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Panigrahy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Salamon, N., Jackson, H.A. et al. PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 40, 82–96 (2010). https://doi.org/10.1007/s00247-009-1457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1457-5

Keywords

Navigation