Skip to main content

Advertisement

Log in

The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We studied the contribution of interictal FDG-PET ([18 F] fluorodeoxyglucose-positron emission tomography) in epileptic focus identification in temporal lobe epilepsy patients with positive, equivocal and negative magnetic resonance imaging (MRI).

Methods

Ninety-eight patients who underwent surgical treatment for drug resistant temporal lobe epilepsy after neuropsychological evaluation, scalp video EEG monitoring, FDG-PET, MRI and/or long-term intracranial EEG and with >12 months clinical follow-up were included in this study. FDG-PET findings were compared to MRI, histopathology, scalp video EEG and long-term intracranial EEG monitoring.

Results

FDG-PET lateralized the seizure focus in 95 % of MRI positive, 69 % of MRI equivocal and 84 % of MRI negative patients. There was no statistically significant difference between the surgical outcomes among the groups with Engel class I and II outcomes achieved in 86 %, 86 %, 84 % of MRI positive, equivocal and negative temporal lobe epilepsy patients, respectively. The patients with positive unilateral FDG-PET demonstrated excellent postsurgical outcomes, with 96 % Engel class I and II. Histopathology revealed focal lesions in 75 % of MRI equivocal, 84 % of MRI positive, and 23 % of MRI negative temporal lobe epilepsy cases.

Conclusion

FDG-PET is an accurate noninvasive method in lateralizing the epileptogenic focus in temporal lobe epilepsy, especially in patients with normal or equivocal MRIs, or non-lateralized EEG monitoring. Very subtle findings in MRI are often associated with histopathological lesions and should be described in MRI reports. The patients with negative or equivocal MRI temporal lobe epilepsy are good surgical candidates with comparable postsurgical outcomes to patients with MRI positive temporal lobe epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Engel J Jr, McDermott MP, Wiebe S, Langfitt JT, Stern JM, Dewar S, Sperling MR, Gardiner I, Erba G, Fried I, Jacobs M, Vinters HV, Mintzer S, Kieburtz K (2012) Early Randomized Surgical Epilepsy Trial (ERSET) Study Group. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 7:922–930

    Article  Google Scholar 

  2. Wieser HG (2004) ILAE Commission on Neurosurgery of Epilepsy: ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714

    Article  PubMed  Google Scholar 

  3. Engel J, Van Ness PC, Rasmussen TB, Ojemann LM (1993) Outcome with respect to epileptic seizures. In: Engel J (ed) Surgical treatment of the epilepsies. Raven Press, New York, USA, pp 609–621

    Google Scholar 

  4. Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B (2007) The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. A meta-analysis. Seizure 16:509–520, Epub 2007 May 25

    Article  PubMed  CAS  Google Scholar 

  5. Kuzniecky RI, Bilir E, Gilliam F, Faught E, Palmer C, Morawetz R, Jackson G (1997) Multimodality MRI in mesial temporal sclerosis: relative sensitivity and specificity. Neurology 49:774–778

    Article  PubMed  CAS  Google Scholar 

  6. Carne RP, O'Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, Bowden SC, Kaye AH, Cook MJ (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285, Epub 2004 Jul 28

    Article  PubMed  CAS  Google Scholar 

  7. Cascino GD, Jack CR Jr, Parisi JE, Sharbrough FW, Hirschorn KA, Meyer FB, Marsh WR, O'Brien PC (1991) Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol 30:31–36

    Article  PubMed  CAS  Google Scholar 

  8. Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, Gumnit R, Zahn C, Westbrook E, Enos B (2003) Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Report of the Quality Standards Subcommittee of the American Academy of Neurology, in Association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology 60:538–547

    Article  PubMed  Google Scholar 

  9. Stefan H (2000) Presurgical evaluation for epilepsy surgery—European standards. European Federation of Neurological Societies Task Force. Eur J Neurol 7:119–122

    Article  Google Scholar 

  10. O'Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook M (2001) The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 42:1158–1165

    PubMed  Google Scholar 

  11. So EL, Radhakrishnan K, Silbert PL, Cascino GD, Sharbrough FW, O'Brien PC (1997) Assessing changes over time in temporal lobectomy: outcome by scoring seizure frequency. Epilepsy Res 27:119–125

    Article  PubMed  CAS  Google Scholar 

  12. Nishio S, Morioka T, Hisada K, Fukui M (2000) Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes. Neurosurg Rev 23:84–89

    PubMed  CAS  Google Scholar 

  13. Berkovic SF, Andermann F, Olivier A, Ethier R, Melanson D, Robitaille Y, Kuzniecky R, Peters T, Feindel W (1991) Hippocampal sclerosis in temporal lobe epilepsy demonstrated by magnetic resonance imaging. Ann Neurol 29:175–182

    Article  PubMed  CAS  Google Scholar 

  14. Gonçalves Pereira PM, Oliveira E, Rosado P (2006) Relative localizing value of amygdalo-hippocampal MR biometry in temporal lobe epilepsy. Epilepsy Res 69:147–164

    Article  PubMed  Google Scholar 

  15. Kim JH (1995) Pathology of seizure disorders. Neuroimaging Clin N Am 5:527–545

    PubMed  CAS  Google Scholar 

  16. Hardiman O, Burke T, Phillips J, Murphy S, O’Moore B, Staunton H, Farrell MA (1988) Microdysgenesis in resected temporal neocortex: incidence and clinical significance in focal epilepsy. Neurology 38:1041–1047

    Article  PubMed  CAS  Google Scholar 

  17. Eriksson SH, Free SL, Thom M, Martinian L, Symms MR, Salmenpera TM, McEvoy AW, Harkness W, Duncan JS, Sisodiya SM (2007) Correlation of quantitative MRI and neuropathology in epilepsy surgical resection specimens: T2 correlates with neuronal tissue in gray matter. NeuroImage 37:48–55, Epub 2007 May 8

    Article  PubMed  CAS  Google Scholar 

  18. Theodore WH, Kelley K, Toczek MT, Gaillard WD (2004) Epilepsy duration, febrile seizures, and cerebral glucose metabolism. Epilepsia 45:276–279

    Article  PubMed  Google Scholar 

  19. Lamusuo S, Forss N, Ruottinen HM, Bergman J, Mälä E, Solin O, Rinne JK, Ruotsalainen U, Ylinen A, Vapalahti M, Hari R, Rinne JO (1999) [18 F]FDG-PET and whole-scalp MEG localization of epileptogenic cortex. Epilepsia 40:921–930

    Article  PubMed  CAS  Google Scholar 

  20. Brodbeck V, Spinelli L, Lascano AM, Pollo C, Schaller K, Vargas MI, Wissmeyer M, Michel CM, Seeck M (2010) Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 51:583–591, Epub 2010 Feb 26

    Article  PubMed  Google Scholar 

  21. Kuba R, Tyrlíková I, Chrastina J, Slaná B, Pažourková M, Hemza J, Brázdil M, Novák Z, Hermanová M, Rektor I (2011) "MRI-negative PET-positive" temporal lobe epilepsy: invasive EEG findings, histopathology, and postoperative outcomes. Epilepsy Behav 22:537–541, Epub 2011 Oct 1

    Article  PubMed  Google Scholar 

  22. Wong CH, Birkett J, Byth K, Dexter M, Somerville E, Gill D, Chaseling R, Fearnside M, Bleasel A (2009) Risk factors for complications during intracranial electrode recording in presurgical evaluation of drug resistant partial epilepsy. Acta Neurochir (Wien) 151:37–50, Epub 2009 Jan 8

    Article  Google Scholar 

  23. Ryvlin P, Bouvard S, Le Bars D, De Lamérie G, Grégoire MC, Kahane P, Froment JC, Mauguière F (1998) Clinical utility of flumazenil-PET versus [18 F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 121:2067–2081

    Article  PubMed  Google Scholar 

  24. Salanova V, Markand O, Worth R (1995) Longitudinal follow-up in 145 patients with medically refractory temporal lobe epilepsy treated surgically between 1984 and 1995. Epilepsia 40:1417–1423

    Article  Google Scholar 

  25. Choi JY, Kim SJ, Hong SB, Seo DW, Hong SC, Kim BT, Kim SE (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30(4):581–587, Epub 2003 Jan 30

    Article  PubMed  Google Scholar 

  26. Struck AF, Hall LT, Floberg JM, Perlman SB, Dulli DA (2011) Surgical decision making in temporal lobe epilepsy: a comparison of [(18)F]FDG-PET, MRI, and EEG. Epilepsy Behav 22:293–297, Epub 2011 Jul 27

    Article  PubMed  Google Scholar 

  27. Chee MW, Morris HH 3rd, Antar MA, Van Ness PC, Dinner DS, Rehm P, Salanova V (1993) Presurgical evaluation of temporal lobe epilepsy using interictal temporal spikes and positron emission tomography. Arch Neurol 50:45–48

    Article  PubMed  CAS  Google Scholar 

  28. Sperling MRN (1997) Clinical challenges in invasive monitoring in epilepsy surgery. Epilepsia 38(Suppl 4):S6–S12

    Article  PubMed  Google Scholar 

  29. Rausch R, Henry TR, Ary CM, Engel J Jr, Mazziotta J (1994) Asymmetric interictal glucose hypometabolism and cognitive performance in epileptic patients. Arch Neurol 51:139–144

    Article  PubMed  CAS  Google Scholar 

  30. Semah F, Baulac M, Hasboun D, Frouin V, Mangin JF, Papageorgiou S, Leroy-Willig A, Philippon J, Laplane D, Samson Y (1995) Is interictal temporal hypometabolism related to mesial temporal sclerosis? A positron emission tomography/magnetic resonance imaging confrontation. Epilepsia 36:447–456

    Article  PubMed  CAS  Google Scholar 

  31. Dlugos DJ, Jaggi J, O'Connor WM, Ding XS, Reivich M, O'Connor MJ, Sperling MR (1999) Hippocampal cell density and subcortical metabolism in temporal lobe epilepsy. Epilepsia 40:408–413

    Article  PubMed  CAS  Google Scholar 

  32. Knowlton RC, Laxer KD, Klein G, Sawrie S, Ende G, Hawkins RA, Aassar OS, Soohoo K, Wong S, Barbaro N (2001) In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 57:1184–1190

    Article  PubMed  CAS  Google Scholar 

  33. Hajek M, Wieser HG, Khan N, Antonini A, Schrott PR, Maguire P, Beer HF, Leenders KL (1994) Preoperative and postoperative glucose consumption in mesiobasal and lateral temporal lobe epilepsy. Neurology 44:2125–2132

    Article  PubMed  CAS  Google Scholar 

  34. Leiderman DB, Balish M, Sato S, Kufta C, Reeves P, Gaillard WD, Theodore WH (1992) Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res 13:153–157

    Article  PubMed  CAS  Google Scholar 

  35. Engel J Jr, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH (1982) Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 12:518–528

    Article  PubMed  Google Scholar 

  36. Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B, Nataf F, Roux FX (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 27(Pt 1):164–174, Epub 2003 Oct 8

    Article  Google Scholar 

  37. Koutroumanidis M, Binnie CD, Elwes RD, Polkey CE, Seed P, Alarcon G, Cox T, Barrington S, Marsden P, Maisey MN, Panayiotopoulos CP (1998) Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications. J Neurol Neurosurg Psychiatry 65:170–176

    Article  PubMed  CAS  Google Scholar 

  38. Parker F, Levesque MF (1999) Presurgical contribution of quantitative stereotactic positron emission tomography in temporolimbic epilepsy. Surg Neurol 51:202–210

    Article  PubMed  CAS  Google Scholar 

  39. Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N (2012) Structural substrates for resting network disruption in temporal lobe epilepsy. Brain 135:2350–2357, Epub 2012 Jun 4

    Article  PubMed  Google Scholar 

  40. Concha L, Kim H, Bernasconi A, Bernhardt BC, Bernasconi N (2012) Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology 79:455–462, Epub 2012 Jul 18

    Article  PubMed  Google Scholar 

  41. Shih JJ, Weisend MP, Sanders JA, Lee RR (2011) Magnetoencephalographic and magnetic resonance spectroscopy evidence of regional functional abnormality in mesial temporal lobe epilepsy. Brain Topogr 23(4):368–374, Epub 2010 Jul 23

    Article  PubMed  Google Scholar 

  42. Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, Rees S, O'Brien TJ (2012) Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 53(7):1233–1244. doi:10.1111/j.1528-1167.2012.03525.x. Epub 2012 Jun 12

    Article  PubMed  Google Scholar 

  43. Matsuda H, Matsuda K, Nakamura F, Kameyama S, Masuda H, Otsuki T, Nakama H, Shamoto H, Nakazato N, Mizobuchi M, Nakagawara J, Morioka T, Kuwabara Y, Aiba H, Yano M, Kim YJ, Nakase H, Kuji I, Hirata Y, Mizumura S, Imabayashi E, Sato N (2009) Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med 23(3):283–291, Epub 2009 Apr 4

    Article  PubMed  Google Scholar 

  44. Bouilleret V, Valenti MP, Hirsch E, Semah F, Namer IJ (2002) Correlation between PET and SISCOM in temporal lobe epilepsy. J Nucl Med 43(8):991–998

    PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beril Gok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gok, B., Jallo, G., Hayeri, R. et al. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55, 541–550 (2013). https://doi.org/10.1007/s00234-012-1121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1121-x

Keywords

Navigation