Skip to main content

Advertisement

Log in

Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Anatomical studies have shown that the paraventricular nucleus of the thalamus (PVT) innervates areas of the forebrain involved in the expression and regulation of emotional behaviors including fear and anxiety. In addition, the PVT is densely innervated by fibers containing orexin-A (OXA) and orexin-B (OXB), peptides that are well-known for their arousal effects on behavior.

Objectives

In this study, we investigate whether microinjections of orexin receptor agonists and antagonists in the PVT region alter expression of anxiety-like behaviors in the rat as measured in the elevated plus maze.

Results

We report that microinjections of OXA and OXB in the PVT region elicited anxiety-like response as indicated by a reduction in open arm time and entries. In addition, OXA and OXB produced changes in ethological measures indicative of an anxiety state. Central administrations of antagonists for corticotropin releasing factor (CRF) or the opioid kappa receptors attenuated the anxiogenic effects produced by microinjections of OXA in the PVT region. We also provide evidence that endogenously released orexins act at the PVT to produce anxiety by showing that microinjections of TCSOX229, an orexin-2 receptor antagonist, in the PVT region attenuated the anxiogenic effects produced by a previous exposure to footshock stress.

Conclusions

This study indicates that endogenously released orexins act on the PVT to regulate anxiety levels through mechanisms involving the brain kappa and CRF receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbari E, Naghdi N, Motamedi F (2006) Functional inactivation of orexin 1 receptors in CA1 region impairs acquisition, consolidation and retrieval in Morris water maze task. Behav Brain Res 173:47–52

    Article  CAS  PubMed  Google Scholar 

  • Akbari E, Naghdi N, Motamedi F (2007) The selective orexin 1 receptor antagonist SB-334867-A impairs acquisition and consolidation but not retrieval of spatial memory in Morris water maze. Peptides 28:650–656

    Article  CAS  PubMed  Google Scholar 

  • Akbari E, Motamedi F, Naghdi N, Noorbakhshnia M (2008) The effect of antagonization of orexin 1 receptors in CA1 and dentate gyrus regions on memory processing in passive avoidance task. Behav Brain Res 187:172–177

    CAS  PubMed  Google Scholar 

  • Albrechet-Souza L, Cristina de Carvalho M, Rodrigues Franci C, Brandao ML (2007) Increases in plasma corticosterone and stretched-attend postures in rats naive and previously exposed to the elevated plus-maze are sensitive to the anxiolytic-like effects of midazolam. Horm Behav 52:267–273

    Article  CAS  PubMed  Google Scholar 

  • Augustsson H, Meyerson BJ (2004) Exploration and risk assessment: a comparative study of male house mice (Mus musculus musculus) and two laboratory strains. Physiol Behav 81:685–698

    Article  CAS  PubMed  Google Scholar 

  • Bals-Kubik R, Ableitner A, Herz A, Shippenberg TS (1993) Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther 264:489–495

    CAS  PubMed  Google Scholar 

  • Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22:7835–7839

    CAS  PubMed  Google Scholar 

  • Berridge CW, Mitton E, Clark W, Roth RH (1999) Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse 32:187–197

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic–pituitary–adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Borelli KG, Brandao ML (2008) Effects of ovine CRF injections into the dorsomedial, dorsolateral and lateral columns of the periaqueductal gray: a functional role for the dorsomedial column. Horm Behav 53:40–50

    Article  CAS  PubMed  Google Scholar 

  • Boutrel B, de Lecea L (2008) Addiction and arousal: the hypocretin connection. Physiol Behav 93:947–951

    Article  CAS  PubMed  Google Scholar 

  • Brown EE, Robertson GS, Fibiger HC (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. J Neurosci 12:4112–4121

    CAS  PubMed  Google Scholar 

  • Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C (2007) Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 27:11614–11623

    Article  CAS  PubMed  Google Scholar 

  • Bruchas MR, Xu M, Chavkin C (2008) Repeated swim stress induces kappa opioid-mediated activation of extracellular signal-regulated kinase 1/2. Neuroreport 19:1417–1422

    Article  CAS  PubMed  Google Scholar 

  • Bubser M, Deutch AY (1999) Stress induces Fos expression in neurons of the thalamic paraventricular nucleus that innervate limbic forebrain sites. Synapse 32:13–22

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Carter ME, Borg JS, de Lecea L (2009) The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 9:39–45

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Saito T, Ohiwa N, Tateoka M, Deocaris CC, Fujikawa T, Soya H (2007) Inhibitory effects of an orexin-2 receptor antagonist on orexin A- and stress-induced ACTH responses in conscious rats. Neurosci Res 57:462–466

    Article  CAS  PubMed  Google Scholar 

  • Chastrette N, Pfaff DW, Gibbs RB (1991) Effects of daytime and nighttime stress on Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, the habenula, and the posterior paraventricular nucleus of the thalamus. Brain Res 563:339–344

    Article  CAS  PubMed  Google Scholar 

  • Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49:171–176

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35:105–135

    Article  PubMed  Google Scholar 

  • Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157

    Article  CAS  PubMed  Google Scholar 

  • Duxon MS, Stretton J, Starr K, Jones DN, Holland V, Riley G, Jerman J, Brough S, Smart D, Johns A, Chan W, Porter RA, Upton N (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl) 153:203–209

    Article  CAS  Google Scholar 

  • Espana RA, Plahn S, Berridge CW (2002) Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Res 943:224–236

    Article  CAS  PubMed  Google Scholar 

  • Espana RA, Valentino RJ, Berridge CW (2003) Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121:201–217

    Article  CAS  PubMed  Google Scholar 

  • Espejo EF (1997) Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behav Brain Res 87:233–238

    Article  CAS  PubMed  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M, Saper CB, Scammell TE (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662

    CAS  PubMed  Google Scholar 

  • File SE (2001) Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 125:151–157

    Article  CAS  PubMed  Google Scholar 

  • Furlong TM, Vianna DM, Liu L, Carrive P (2009) Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur J Neurosci 30:1603–14

    Article  PubMed  Google Scholar 

  • Garcia AM, Martinez R, Brandao ML, Morato S (2005) Effects of apomorphine on rat behavior in the elevated plus-maze. Physiol Behav 85:440–447

    Article  CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  CAS  PubMed  Google Scholar 

  • Hamlin AS, Clemens KJ, Choi EA, McNally GP (2009) Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci 29:802–812

    Article  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs SC, Koob GF (2004) Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 311:427–440

    Article  CAS  PubMed  Google Scholar 

  • Hirose M, Egashira S, Goto Y, Hashihayata T, Ohtake N, Iwaasa H, Hata M, Fukami T, Kanatani A, Yamada K (2003) N-acyl 6, 7-dimethoxy-1, 2, 3, 4-tetrahydroisoquinoline: the first orexin-2 receptor selective non-peptidic antagonist. Bioorg Med Chem Lett 13:4497–4499

    Article  CAS  PubMed  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci USA 105:19480–19485

    Article  CAS  PubMed  Google Scholar 

  • Hsu DT, Price JL (2009) Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 512:825–848

    Article  PubMed  Google Scholar 

  • Huang H, Ghosh P, van den Pol AN (2006) Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 95:1656–1668

    Article  PubMed  Google Scholar 

  • Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, Murakami N (2000) Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun 270:318–323

    Article  CAS  PubMed  Google Scholar 

  • Jaszberenyi M, Bujdoso E, Pataki I, Telegdy G (2000) Effects of orexins on the hypothalamic–pituitary–adrenal system. J Neuroendocrinol 12:1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Jones DN, Gartlon J, Parker F, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Hatcher JP, Johns A, Porter RA, Hagan JJ, Hunter AJ, Upton N (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl) 153:210–218

    Article  CAS  Google Scholar 

  • Kirouac GJ, Li S (2008) Anatomical and functional relationship between the paraventricular nucleus of the thalamus and dynorphin neurons in the nucleus accumbens Society for Neuroscience Annual Meeting, Washington DC

  • Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kiss A (2007) Immobilization induced fos expression in the medial and lateral hypothalamic areas: a limited response of hypocretin neurons. Ideggyogy Sz 60:192–195

    PubMed  Google Scholar 

  • Knoll AT, Meloni EG, Thomas JB, Carroll FI, Carlezon WA Jr (2007) Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther 323:838–845

    Article  CAS  PubMed  Google Scholar 

  • Kolaj M, Doroshenko P, Yan Cao X, Coderre E, Renaud LP (2007) Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency. Neuroscience 147:1066–1075

    Article  CAS  PubMed  Google Scholar 

  • Korte SM, De Boer SF (2003) A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463:163–175

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, De Boer SF, Bohus B (1999) Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning. Stress 3:27–40

    Article  CAS  PubMed  Google Scholar 

  • Kuru M (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroendocrinology 11:1977–1980

    CAS  Google Scholar 

  • Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414

    Article  CAS  PubMed  Google Scholar 

  • Lang PJ, Davis M (2006) Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog Brain Res 156:3–29

    Article  PubMed  Google Scholar 

  • Lee Y, Davis M (1997) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17:6434–6446

    CAS  PubMed  Google Scholar 

  • Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506:263–287

    Article  PubMed  Google Scholar 

  • Li Y, Li S, Sui N, Kirouac GJ (2009) Orexin-A acts on the paraventricular nucleus of the midline thalamus to inhibit locomotor activity in rats. Pharmacol Biochem Behav 93:506–514

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010) Changes in emotional behavior produced by orexin microinjections in the paraventricular nucleus of the thalamus. Pharmacol Biochem Behav 95:121–128

    Article  CAS  PubMed  Google Scholar 

  • Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudery M (2005) Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30:316–324

    Article  PubMed  Google Scholar 

  • Louvart H, Maccari S, Lesage J, Leonhardt M, Dickes-Coopman A, Darnaudery M (2006) Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinology 31:92–99

    Article  CAS  PubMed  Google Scholar 

  • Marchant NJ, Densmore VS, Osborne PB (2007) Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 504:702–715

    Article  CAS  PubMed  Google Scholar 

  • Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25

    Article  CAS  PubMed  Google Scholar 

  • Mikics E, Baranyi J, Haller J (2008a) Rats exposed to traumatic stress bury unfamiliar objects—a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94:341–348

    Article  CAS  PubMed  Google Scholar 

  • Mikics E, Toth M, Varju P, Gereben B, Liposits Z, Ashaber M, Halasz J, Barna I, Farkas I, Haller J (2008b) Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology 33:1198–1210

    Article  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  Google Scholar 

  • Moser PC (1989) An evaluation of the elevated plus-maze test using the novel anxiolytic buspirone. Psychopharmacology (Berl) 99:48–53

    Article  CAS  Google Scholar 

  • Naghdi N, Asadollahi A (2004) Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats. Behav Brain Res 153:1–6

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Uramura K, Nambu T, Yada T, Goto K, Yanagisawa M, Sakurai T (2000) Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res 873:181–187

    Article  CAS  PubMed  Google Scholar 

  • Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, Chen J, Neve R, Nestler EJ, Duman RS (2002) Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J Neurosci 22:10883–10890

    CAS  PubMed  Google Scholar 

  • Novak CM, Nunez AA (1998) Daily rhythms in Fos activity in the rat ventrolateral preoptic area and midline thalamic nuclei. Am J Physiol 275:R1620–R1626

    CAS  PubMed  Google Scholar 

  • Ohl F, Toschi N, Wigger A, Henniger MS, Landgraf R (2001) Dimensions of emotionality in a rat model of innate anxiety. Behav Neurosci 115:429–436

    Article  CAS  PubMed  Google Scholar 

  • Parsons MP, Li S, Kirouac GJ (2007) Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J Comp Neurol 500:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  • Peng ZC, Grassi-Zucconi G, Bentivoglio M (1995) Fos-related protein expression in the midline paraventricular nucleus of the rat thalamus: basal oscillation and relationship with limbic efferents. Exp Brain Res 104:21–29

    Article  CAS  PubMed  Google Scholar 

  • Pfaff D, Ribeiro A, Matthews J, Kow LM (2008) Concepts and mechanisms of generalized central nervous system arousal. Ann N Y Acad Sci 1129:11–25

    Article  CAS  PubMed  Google Scholar 

  • Pynoos RS, Ritzmann RF, Steinberg AM, Goenjian A, Prisecaru I (1996) A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry 39:129–134

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Mormede P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Johnson NJ (1995) Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol Biochem Behav 52:297–303

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30:289–304

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Halford JC, Nunes de Souza RL, Canto de Souza AL, Piper DC, Arch JR, Blundell JE (2000) Dose-response effects of orexin-A on food intake and the behavioural satiety sequence in rats. Regul Pept 96:71–84

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36:303–325

    Article  CAS  PubMed  Google Scholar 

  • Sahuque LL, Kullberg EF, McGeehan AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF (2006) Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology (Berl) 186:122–132

    Article  CAS  Google Scholar 

  • Sakamoto F, Yamada S, Ueta Y (2004) Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept 118:183–191

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Taylor MM, Follwell M, Ferguson AV (2002) Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates. Regul Pept 104:97–103

    Article  CAS  PubMed  Google Scholar 

  • Samson WK, Bagley SL, Ferguson AV, White MM (2007) Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. Am J Physiol Regul Integr Comp Physiol 292:R382–R387

    CAS  PubMed  Google Scholar 

  • Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM (2004) Hypocretin (orexin): role in normal behavior and neuropathology. Annu Rev Psychol 55:125–148

    Article  PubMed  Google Scholar 

  • Siegmund A, Wotjak CT (2007a) Hyperarousal does not depend on trauma-related contextual memory in an animal model of posttraumatic stress disorder. Physiol Behav 90:103–107

    Article  CAS  PubMed  Google Scholar 

  • Siegmund A, Wotjak CT (2007b) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860

    Article  PubMed  Google Scholar 

  • Silva RH, Frussa-Filho R (2000) The plus-maze discriminative avoidance task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide and caffeine J Neurosci Methods 102:117–125

    CAS  Google Scholar 

  • Spruijt BM, van Hooff JA, Gispen WH (1992) Ethology and neurobiology of grooming behavior. Physiol Rev 72:825–852

    CAS  PubMed  Google Scholar 

  • Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313

    Article  CAS  PubMed  Google Scholar 

  • Thorpe AJ, Kotz CM (2005) Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res 1050:156–162

    Article  CAS  PubMed  Google Scholar 

  • Thorpe AJ, Mullett MA, Wang C, Kotz CM (2003) Peptides that regulate food intake: regional, metabolic, and circadian specificity of lateral hypothalamic orexin A feeding stimulation. Am J Physiol Regul Integr Comp Physiol 284:R1409–R1417

    CAS  PubMed  Google Scholar 

  • Timofeeva E, Richard D (2001) Activation of the central nervous system in obese Zucker rats during food deprivation. J Comp Neurol 441:71–89

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • van Dijken HH, Mos J, van der Heyden JA, Tilders FJ (1992) Characterization of stress-induced long-term behavioural changes in rats: evidence in favor of anxiety. Physiol Behav 52:945–951

    Article  PubMed  Google Scholar 

  • Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237

    Article  PubMed  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216

    Article  CAS  PubMed  Google Scholar 

  • Walker D, Yang Y, Ratti E, Corsi M, Trist D, Davis M (2009a) Differential effects of the CRF-R1 antagonist GSK876008 on fear-potentiated, light- and CRF-enhanced startle suggest preferential involvement in sustained vs phasic threat responses. Neuropsychopharmacology 34:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Miles LA, Davis M (2009b) Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 33:1291–1308

    Article  CAS  PubMed  Google Scholar 

  • Wall PM, Messier C (2001) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci Biobehav Rev 25:275–286

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M (2005) Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 16:5–8

    Article  PubMed  Google Scholar 

  • Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24:11439–11448

    Article  CAS  PubMed  Google Scholar 

  • Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Onaka T, Sakurai T, Yada T (2002) Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport 13:1351–1353

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla EP, Schulteis G, Ormsby A, Klaassen A, Ling N, McCarthy JR, Koob GF, De Souza EB (2002) Urocortin shares the memory modulating effects of corticotropin-releasing factor (CRF): mediation by CRF1 receptors. Brain Res 952:200–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Canadian Institutes of Health Research (CIHR; MOP68909 to G.J.K.); the National Basic Research Program Grants and the Chinese Academy of Sciences Grant (2009CB522002, KSCXI-TW-R-68 to N.S.); the NSFC Grants and the Project for Young Scientists Fund, Institute of Psychology, CAS (30600184, 07CX081008 to Y.L.). We also acknowledge Keke Qi and Xinwen Dong for their assistance in the analysis of ethological behaviors in the EPM test. The experiments comply with the Regulations for the Administration of Affairs Concerning Experimental Animals (China, 1988).

Conflict of interest

The authors declare that except for income received from their primary employer, no financial support or compensation has been received from any individual or corporate entity over the time when this research has been conducted and manuscript prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert J. Kirouac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, S., Wei, C. et al. Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology 212, 251–265 (2010). https://doi.org/10.1007/s00213-010-1948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1948-y

Keywords

Navigation