Skip to main content

Advertisement

Log in

Perspectives of CD44 targeting therapies

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

CD44 is a family of single-span transmembrane glycoproteins. Members of this family differ in the extracellular domain where ten variant exons are either excluded or included in various combinations. CD44 isoforms participate in many physiological processes including hematopoiesis, regeneration, lymphocyte homing and inflammation. Most importantly, they are involved in pathological processes and in particular in cancer. In several types of tumors, CD44 together with other antigens specifies for cancer stem cell populations. Mechanistically, CD44 proteins act as receptors for hyaluronan, co-receptor for receptor tyrosine kinases (RTKs) or G-protein-coupled receptors or provide a platform for metalloproteinases. For all these reasons, targeting CD44 may be a successful approach in cancer therapy. In this review, we discuss the various possibilities of targeting CD44. Among these are the production of CD44 ectodomains, antibodies, peptides or aptamers. Also inhibition of CD44 expression has been proposed. Finally, the function of CD44 as a hyaluronan receptor was also taken advantage of. We are convinced that the success of these therapies will depend on an increased understanding of the molecular functions of specific CD44 isoforms in particular in cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahrens T, Sleeman JP, Schempp CM et al (2001) Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20(26):3399–3408

    CAS  PubMed  Google Scholar 

  • Akima K, Ito H, Iwata Y et al (1996) Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity. J Drug Target 4(1):1–8. doi:10.3109/10611869609046255

    CAS  PubMed  Google Scholar 

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61(7):1303–1313

    CAS  PubMed  Google Scholar 

  • Avigdor A, Goichberg P, Shivtiel S et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103(8):2981–2989

    CAS  PubMed  Google Scholar 

  • Bartolazzi A, Peach R, Aruffo A, Stamenkovic I (1994) Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 180(1):53–66

    CAS  PubMed  Google Scholar 

  • Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132. doi:10.1021/bc034125f

    CAS  PubMed  Google Scholar 

  • Bennett KL, Jackson DG, Simon JC et al (1995) CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 128:687–698

    CAS  PubMed  Google Scholar 

  • Borjesson PK, Postema EJ, Roos JC et al (2003) Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 9(10 Pt 2):3961S–3972S

    PubMed  Google Scholar 

  • Borjesson PK, Jauw YW, Boellaard R et al (2006) Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 12(7 Pt 1):2133–2140. doi:10.1158/1078-0432.CCR-05-2137

    PubMed  Google Scholar 

  • Boyd DD, Kim SJ, Wang H, Jones TR, Gallick GE (2003) A urokinase-derived peptide (A6) increases survival of mice bearing orthotopically grown prostate cancer and reduces lymph node metastasis. Am J Pathol 162(2):619–626. doi:10.1016/S0002-9440(10)63855-2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi:10.1038/nrc1997

    CAS  PubMed  Google Scholar 

  • Casucci M, Nicolis di Robilant B, Falcone L et al (2013) CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122(20):3461–3472. doi:10.1182/blood-2013-04-493361

    CAS  PubMed  Google Scholar 

  • Chen CH, Cheng CY, Chen YC et al (2014) MicroRNA-328 inhibits renal tubular cell epithelial-to-mesenchymal transition by targeting the CD44 in pressure-induced renal fibrosis. PLoS One 9(6):e99802. doi:10.1371/journal.pone.0099802

    PubMed Central  PubMed  Google Scholar 

  • Choi KY, Saravanakumar G, Park JH, Park K (2012) Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Coll Surf B Biointerfaces 99:82–94. doi:10.1016/j.colsurfb.2011.10.029

    CAS  Google Scholar 

  • Colnot DR, Quak JJ, Roos JC et al (2000) Phase I therapy study of 186Re-labeled chimeric monoclonal antibody U36 in patients with squamous cell carcinoma of the head and neck. J Nucl Med 41(12):1999–2010

    CAS  PubMed  Google Scholar 

  • Colnot DR, Ossenkoppele GJ, Roos JC et al (2002) Reinfusion of unprocessed, granulocyte colony-stimulating factor-stimulated whole blood allows dose escalation of 186Relabeled chimeric monoclonal antibody U36 radioimmunotherapy in a phase I dose escalation study. Clin Cancer Res 8(11):3401–3406

    CAS  PubMed  Google Scholar 

  • Colnot DR, Roos JC, De Bree R et al (2003) Safety, biodistribution, pharmacokinetics, and immunogenicity of (99 m)Tc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 52:576–582

    CAS  PubMed  Google Scholar 

  • Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9(10):2525–2531

    CAS  PubMed  Google Scholar 

  • Culty M, Nguyen HA, Underhill CB (1992) The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 116(4):1055–1062

    CAS  PubMed  Google Scholar 

  • Culty M, Shizari M, Thompson EW, Underhill CB (1994) Binding and degradation of hyaluronan by human breast cancer cell lines expressing different forms of CD44: correlation with invasive potential. J Cell Physiol 160(2):275–286

    CAS  PubMed  Google Scholar 

  • de Bree R, Roos JC, Quak JJ, den Hollander W, Snow GB, van Dongen GA (1995) Radioimmunoscintigraphy and biodistribution of technetium-99 m-labeled monoclonal antibody U36 in patients with head and neck cancer. Clin Cancer Res 1(6):591–598

    PubMed  Google Scholar 

  • DeGrendele HC, Estess P, Picker LJ, Siegelman MH (1996) CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte–endothelial cell primary adhesion pathway. J Exp Med 183(3):1119–1130

    CAS  PubMed  Google Scholar 

  • DeGrendele HC, Estess P, Siegelman MH (1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278(5338):672–675

    CAS  PubMed  Google Scholar 

  • Eliaz RE, Szoka FC Jr (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 61(6):2592–2601

    CAS  PubMed  Google Scholar 

  • Eliaz RE, Nir S, Marty C, Szoka FC Jr (2004) Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res 64(2):711–718

    CAS  PubMed  Google Scholar 

  • Fortin MA, Salnikov AV, Nestor M, Heldin NE, Rubin K, Lundqvist H (2007) Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies. Eur J Nucl Med Mol Imaging 34(9):1376–1387. doi:10.1007/s00259-006-0346-5

    CAS  PubMed  Google Scholar 

  • Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V (2013) Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis 4:e819. doi:10.1038/cddis.2013.364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gately CL, Muul LM, Greenwood MA et al (1984) In vitro studies on the cell-mediated immune response to human brain tumors. II. Leukocyte-induced coats of glycosaminoglycan increase the resistance of glioma cells to cellular immune attack. J Immunol 133(6):3387–3395

    CAS  PubMed  Google Scholar 

  • Ghamande SA, Silverman MH, Huh W et al (2008) A phase 2, randomized, double-blind, placebo-controlled trial of clinical activity and safety of subcutaneous A6 in women with asymptomatic CA125 progression after first-line chemotherapy of epithelial ovarian cancer. Gynecol Oncol 111(1):89–94. doi:10.1016/j.ygyno.2008.06.028

    CAS  PubMed  Google Scholar 

  • Ghatak S, Misra S, Toole BP (2002) Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 277(41):38013–38020. doi:10.1074/jbc.M202404200

    CAS  PubMed  Google Scholar 

  • Ghosh SC, Neslihan Alpay S, Klostergaard J (2012) CD44: a validated target for improved delivery of cancer therapeutics. Expert opinion on therapeutic targets 16(7):635–650. doi:10.1517/14728222.2012.687374

    CAS  PubMed  Google Scholar 

  • Goetinck PF, Stirpe NS, Tsonis PA, Carlone D (1987) The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid. J Cell Biol 105(5):2403–2408

    CAS  PubMed  Google Scholar 

  • Gold MA, Brady WE, Lankes HA et al (2012) A phase II study of a urokinase-derived peptide (A6) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 125(3):635–639. doi:10.1016/j.ygyno.2012.03.023

    CAS  PubMed  Google Scholar 

  • Goldstein LA, Zhou DF, Picker LJ et al (1989) A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56(6):1063–1072

    CAS  PubMed  Google Scholar 

  • Gunthert U, Hofmann M, Rudy W et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65(1):13–24. doi:10.1016/0092-8674(91)90403-L

    CAS  PubMed  Google Scholar 

  • Haylock AK, Spiegelberg D, Nilvebrant J, Sandstrom K, Nestor M (2014) In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study. EJNMMI Res 4(1):11. doi:10.1186/2191-219X-4-11

    PubMed Central  PubMed  Google Scholar 

  • Heider KH, Sproll M, Susani S et al (1996) Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunol Immunother 43(4):245–253

    CAS  PubMed  Google Scholar 

  • Henry JC, Park JK, Jiang J et al (2010) miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 403(1):120–125. doi:10.1016/j.bbrc.2010.10.130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199. doi:10.1038/cdd.2009.56

    CAS  PubMed  Google Scholar 

  • Herrera MB, Bussolati B, Bruno S et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72(4):430–441. doi:10.1038/sj.ki.5002334

    CAS  PubMed  Google Scholar 

  • Hibino S, Shibuya M, Engbring JA, Mochizuki M, Nomizu M, Kleinman HK (2004) Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res 64(14):4810–4816

    CAS  PubMed  Google Scholar 

  • Hofmann M, Rudy W, Zoller M et al (1991) CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51(19):5292–5297

    CAS  PubMed  Google Scholar 

  • Iida J, Clancy R, Dorchak J et al (2014) DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration. PLoS ONE 9(2):e88712. doi:10.1371/journal.pone.0088712

    PubMed Central  PubMed  Google Scholar 

  • Ishimoto T, Nagano O, Yae T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19(3):387–400. doi:10.1016/j.ccr.2011.01.038

    CAS  PubMed  Google Scholar 

  • Jackson DG, Bell JI, Dickinson R, Timans J, Shields J, Whittle N (1995) Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol 128(4):673–685

    CAS  PubMed  Google Scholar 

  • Jalkanen S, Bargatze RF, de los Toyos J, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95 kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 105:983–990

    CAS  PubMed  Google Scholar 

  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174

    PubMed  Google Scholar 

  • Jung T, Castellana D, Klingbeil P et al (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11(10):1093–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung T, Gross W, Zoller M (2011) CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem 286(18):15862–15874. doi:10.1074/jbc.M110.208421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knudson W, Biswas C, Toole BP (1984) Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci U S A 81(21):6767–6771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koppe M, Schaijk F, Roos J et al (2004) Safety, pharmacokinetics, immunogenicity, and biodistribution of (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with early-stage breast cancer. Cancer Biother Radiopharm 19(6):720–729. doi:10.1089/cbr.2004.19.720

    CAS  PubMed  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. Faseb J 6(7):2397–2404

    CAS  PubMed  Google Scholar 

  • Lesley J, Hyman R (1992) CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur J Immunol 22(10):2719–2723

    CAS  PubMed  Google Scholar 

  • Li C, Wu JJ, Hynes M et al (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141(6):2218–2227. doi:10.1053/j.gastro.2011.08.009

    CAS  PubMed  Google Scholar 

  • Li L, Xie X, Luo J et al (2012) Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol Ther 20(12):2326–2334. doi:10.1038/mt.2012.201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Hao X, Qin J et al (2014) Antibody against CD44 s inhibits pancreatic tumor initiation and postradiation recurrence in mice. Gastroenterology 146(4):1108–1118. doi:10.1053/j.gastro.2013.12.035

    CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215. doi:10.1038/nm.2284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Y, Prestwich GD (1999) Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem 10(5):755–763. doi:10.1021/bc9900338

    CAS  PubMed  Google Scholar 

  • Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69(1):169–184

    CAS  PubMed  Google Scholar 

  • Ma Q, Jiang Q, Pu Q et al (2013) MicroRNA-143 inhibits migration and invasion of human non-small-cell lung cancer and its relative mechanism. Int J Biol Sci 9(7):680–692. doi:10.7150/ijbs.6623

    PubMed Central  PubMed  Google Scholar 

  • Matzke A, Herrlich P, Ponta H, Orian-Rousseau V (2005) A five-amino-acid peptide blocks Met- and Ron-dependent cell migration. Cancer Res 65(14):6105–6110. doi:10.1158/0008-5472.CAN-05-0207

    CAS  PubMed  Google Scholar 

  • McBride WH, Bard JB (1979) Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med 149(2):507–515

    CAS  PubMed  Google Scholar 

  • Mielgo A, van Driel M, Bloem A, Landmann L, Gunthert U (2005) A novel antiapoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms. Cell Death Differ

  • Misra S, Hascall VC, De Giovanni C, Markwald RR, Ghatak S (2009) Delivery of CD44shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+ mice. J Biol Chem. doi:10.1074/jbc.M806772200

    Google Scholar 

  • Misra S, Heldin P, Hascall VC et al (2011) Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 278(9):1429–1443. doi:10.1111/j.1742-4658.2011.08071.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizrahy S, Goldsmith M, Leviatan-Ben-Arye S et al (2014) Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles. Nanoscale 6(7):3742–3752. doi:10.1039/c3nr06102g

    CAS  PubMed  Google Scholar 

  • Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function and association with the malignant process. In: VandeWoude GF, Klein G (eds) Advances in cancer research, vol 71. Elsevier, San-Diego, pp 243–318

  • Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39(6):527–579

    CAS  PubMed  Google Scholar 

  • Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 9(4):293–302. doi:10.1038/nrc2619

    CAS  PubMed  Google Scholar 

  • O’Neill HC (1989) Antibody which defines a subset of bone marrow cells that can migrate to thymus. Immunology 68(1):59–65

    PubMed Central  PubMed  Google Scholar 

  • Oppenheimer-Marks N, Davis LS, Lipsky PE (1990) Human T lymphocyte adhesion to endothelial cells and transendothelial migration. Alteration of receptor use relates to the activation status of both the T cell and the endothelial cell. J Immunol 145(1):140–148

    CAS  PubMed  Google Scholar 

  • Orian-Rousseau V (2010) CD44, a therapeutic target for metastasising tumours. Eur J Cancer 46(7):1271–1277. doi:10.1016/j.ejca.2010.02.024

    CAS  PubMed  Google Scholar 

  • Orian-Rousseau V, Sleeman J (2014) CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res 123:231–254. doi:10.1016/B978-0-12-800092-2.00009-5

    PubMed  Google Scholar 

  • Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H (2002) CD44 is required for two consecutive steps in HGF/c-met signaling. Genes Dev 16(23):3074–3086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orian-Rousseau V, Morrison H, Matzke A et al (2007) Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Mol Biol Cell 18(1):76–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pals ST, Hogervorst F, Keizer GD, Thepen T, Horst E, Figdor CC (1989) Identification of a widely distributed 90-kDa glycoprotein that is homologous to the Hermes-1 human lymphocyte homing receptor. J Immunol 143(3):851–857

    CAS  PubMed  Google Scholar 

  • Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A (1993) Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol 122(1):257–264

    CAS  PubMed  Google Scholar 

  • Peer D, Margalit R (2004) Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 108(5):780–789. doi:10.1002/ijc.11615

    CAS  PubMed  Google Scholar 

  • Peterson RM, Yu Q, Stamenkovic I, Toole BP (2000) Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am J Pathol 156(6):2159–2167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piotrowicz RS, Damaj BB, Hachicha M, Incardona F, Howell SB, Finlayson M (2011) A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells. Mol Cancer Ther 10(11):2072–2082. doi:10.1158/1535-7163.MCT-11-0351

    CAS  PubMed  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    CAS  PubMed  Google Scholar 

  • Postema EJ, Borjesson PK, Buijs WC et al (2003) Dosimetric analysis of radioimmunotherapy with 186Re-labeled bivatuzumab in patients with head and neck cancer. J Nucl Med 44(10):1690–1699

    CAS  PubMed  Google Scholar 

  • Pouyani T, Prestwich GD (1994) Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials. Bioconjug Chem 5(4):339–347

    CAS  PubMed  Google Scholar 

  • Qiu L, Li Z, Qiao M et al (2014) Self-assembled pH-responsive hyaluronic acid-g-poly[(l)-histidine] copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater 10(5):2024–2035. doi:10.1016/j.actbio.2013.12.025

    CAS  PubMed  Google Scholar 

  • Riechelmann H, Sauter A, Golze W et al (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44(9):823–829. doi:10.1016/j.oraloncology.2007.10.009

    CAS  PubMed  Google Scholar 

  • Rudy W, Hofmann M, Schwartz-Albiez R et al (1993) The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res 53(6):1262–1268

    CAS  PubMed  Google Scholar 

  • Sandstrom K, Nestor M, Ekberg T, Engstrom M, Anniko M, Lundqvist H (2008) Targeting CD44v6 expressed in head and neck squamous cell carcinoma: preclinical characterization of an 111In-labeled monoclonal antibody. Tumour Biol 29(3):137–144. doi:10.1159/000143399

    PubMed  Google Scholar 

  • Sandstrom K, Haylock AK, Spiegelberg D, Qvarnstrom F, Wester K, Nestor M (2012) A novel CD44v6 targeting antibody fragment with improved tumor-to-blood ratio. Int J Oncol 40(5):1525–1532. doi:10.3892/ijo.2012.1352

    CAS  PubMed  Google Scholar 

  • Sauter A, Kloft C, Gronau S et al (2007) Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck. Int J Oncol 30(4):927–935

    CAS  PubMed  Google Scholar 

  • Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V (2014) CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ. doi:10.1038/cdd.2014.156

    PubMed  Google Scholar 

  • Schrijvers AH, Quak JJ, Uyterlinde AM et al (1993) MAb U36, a novel monoclonal antibody successful in immunotargeting of squamous cell carcinoma of the head and neck. Cancer Res 53(18):4383–4390

    CAS  PubMed  Google Scholar 

  • Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T (2013) Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res 19(22):6193–6204. doi:10.1158/1078-0432.CCR-13-1536

    CAS  PubMed  Google Scholar 

  • Song S, Chen F, Qi H et al (2014a) Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of docetaxel. Pharm Res 31(4):1032–1045. doi:10.1007/s11095-013-1225-y

    CAS  PubMed  Google Scholar 

  • Song S, Qi H, Xu J et al (2014b) Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting. Pharm Res. doi:10.1007/s11095-014-1393-4

    Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15(8):1443–1461. doi:10.1261/rna.1534709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straathof KC, Pule MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254. doi:10.1182/blood-2004-11-4564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stroomer JW, Roos JC, Sproll M et al (2000) Safety and biodistribution of 99mTechnetium-labeled anti-CD44v6 monoclonal antibody BIWA 1 in head and neck cancer patients. Clin Cancer Res 6(8):3046–3055

    CAS  PubMed  Google Scholar 

  • Sun S, Wang Z (2011) Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer 129(10):2337–2348. doi:10.1002/ijc.25927

    CAS  PubMed  Google Scholar 

  • Tijink BM, Buter J, de Bree R et al (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12(20 Pt 1):6064–6072

    CAS  PubMed  Google Scholar 

  • Todaro M, Gaggianesi M, Catalano V et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356. doi:10.1016/j.stem.2014.01.009

    CAS  PubMed  Google Scholar 

  • Trapasso S, Allegra E (2012) Role of CD44 as a marker of cancer stem cells in head and neck cancer. Biologics 6:379–383. doi:10.2147/BTT.S37906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tremmel M, Matzke A, Albrecht I et al (2009) A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood 114(25):5236–5244. doi:10.1182/blood-2009-04-219204

    CAS  PubMed  Google Scholar 

  • Turley EA, Tretiak M (1985) Glycosaminoglycan production by murine melanoma variants in vivo and in vitro. Cancer Res 45(10):5098–5105

    CAS  PubMed  Google Scholar 

  • Ugarte-Berzal E, Bailon E, Amigo-Jimenez I et al (2012) A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds alpha4beta1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells. J Biol Chem 287(33):27601–27613. doi:10.1074/jbc.M112.354670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ugarte-Berzal E, Bailon E, Amigo-Jimenez I, Albar JP, Garcia-Marco JA, Garcia-Pardo A (2014) A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells. J Biol Chem 289(22):15340–15349. doi:10.1074/jbc.M114.559187

    CAS  PubMed  Google Scholar 

  • Valentine A, O’Rourke M, Yakkundi A et al (2011) FKBPL and peptide derivatives: novel biological agents that inhibit angiogenesis by a CD44-dependent mechanism. Clin Cancer Res 17(5):1044–1056. doi:10.1158/1078-0432.CCR-10-2241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Hal NL, Van Dongen GA, Rood-Knippels EM, Van Der Valk P, Snow GB, Brakenhoff RH (1996) Monoclonal antibody U36, a suitable candidate for clinical immunotherapy of squamous-cell carcinoma, recognizes a CD44 isoform. Int J Cancer 68(4):520–527

    PubMed  Google Scholar 

  • Van Hal NL, Van Dongen GA, Ten Brink CB, Herron JN, Snow GB, Brakenhoff RH (1997) Sequence variation in the monoclonal-antibody-U36-defined CD44v6 epitope. Cancer Immunol Immunother 45(2):88–92

    PubMed  Google Scholar 

  • Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136(4):586–591. doi:10.1016/j.cell.2009.02.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verel I, Heider KH, Siegmund M et al (2002) Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts. Int J Cancer 99(3):396–402

    CAS  PubMed  Google Scholar 

  • Vermeulen JF, van Brussel AS, Adams A et al (2013) Near-infrared fluorescence molecular imaging of ductal carcinoma in situ with CD44v6-specific antibodies in mice: a preclinical study. Mol Imaging Biol 15(3):290–298. doi:10.1007/s11307-012-0605-8

    PubMed Central  PubMed  Google Scholar 

  • Vugts DJ, Heuveling DA, Stigter-van Walsum M et al (2014) Preclinical evaluation of 89Zr-labeled anti-CD44 monoclonal antibody RG7356 in mice and cynomolgus monkeys: prelude to Phase 1 clinical studies. MAbs 6(2):567–575. doi:10.4161/mabs.27415

    PubMed  Google Scholar 

  • Weigand S, Herting F, Maisel D et al (2012) Global quantitative phosphoproteome analysis of human tumor xenografts treated with a CD44 antagonist. Cancer Res 72(17):4329–4339. doi:10.1158/0008-5472.CAN-12-0136

    CAS  PubMed  Google Scholar 

  • Williams K, Motiani K, Giridhar PV, Kasper S (2013) CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med 238(3):324–338. doi:10.1177/1535370213480714

    CAS  Google Scholar 

  • Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470. doi:10.1007/s10555-008-9130-2

    CAS  PubMed  Google Scholar 

  • Xu XM, Chen Y, Chen J et al (2003) A peptide with three hyaluronan binding motifs inhibits tumor growth and induces apoptosis. Cancer Res 63(18):5685–5690

    CAS  PubMed  Google Scholar 

  • Yadav AK, Mishra P, Jain S, Mishra AK, Agrawal GP (2008) Preparation and characterization of HA–PEG–PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 16(6):464–478. doi:10.1080/10611860802095494

    CAS  PubMed  Google Scholar 

  • Yang B, Yang BL, Savani RC, Turley EA (1994) Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J 13(2):286–296

    PubMed Central  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13(1):35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176

    PubMed Central  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2004) Transforming growth factor-beta facilitates breast carcinoma metastasis by promoting tumor cell survival. Clin Exp Metastasis 21(3):235–242

    CAS  PubMed  Google Scholar 

  • Yu Q, Toole BP, Stamenkovic I (1997) Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 186(12):1985–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16(3):307–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST (2008) Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 68(10):3655–3661

    CAS  PubMed  Google Scholar 

  • Zeilstra J, Joosten SP, van Andel H et al (2014) Stem cell CD44v isoforms promote intestinal cancer formation in apc(min) mice downstream of wnt signaling. Oncogene 33(5):665–670. doi:10.1038/onc.2012.611

    CAS  PubMed  Google Scholar 

  • Zhang L, Underhill CB, Chen L (1995) Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res 55(2):428–433

    CAS  PubMed  Google Scholar 

  • Zhang S, Wu CC, Fecteau JF et al (2013) Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc Natl Acad 110(15):6127–6132. doi:10.1073/pnas.1221841110

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to David Koschut for the help with the figures. The group of Véronique Orian-Rousseau is supported by the Deutsche Forschungsgemeinschaft and the Mildred Scheel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Orian-Rousseau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orian-Rousseau, V., Ponta, H. Perspectives of CD44 targeting therapies. Arch Toxicol 89, 3–14 (2015). https://doi.org/10.1007/s00204-014-1424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1424-2

Keywords

Navigation