Skip to main content
Log in

TBS result is not affected by lumbar spine osteoarthritis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The effect of lumbar osteoarthritis on bone density and trabecular bone score (TBS) was evaluated cross-sectionally and prospectively in postmenopausal women. Lumbar spine osteoarthritis was graded according to Kellgren and Lawrence grades. Lumbar osteoarthritis was found to increase lumbar spine bone density, but not TBS.

Introduction

Lumbar osteoarthritis overestimates lumbar bone density (areal bone mineral density (aBMD)). A new texture parameter, the TBS, has been proposed. Calculation of aBMD uses grey level value, while TBS uses grey level variation. Therefore, our hypothesis was that TBS is not influenced by lumbar spine osteoarthritis.

Methods

Menopausal women participating in osteoporosis and ultrasound (OPUS) study were included. They had an aBMD measurement of the spine and hip at baseline and 6-year visit. TBS was calculated on lumbar spine dual-energy X-ray absorptiometry (DXA) scans in an automated manner. The presence of lumbar osteoarthritis was evaluated on baseline radiographs using Kellgren and Lawrence (K&L) classification. Grades range from 0 to 4. In our study, osteoarthritis was defined by at least K&L grade 2.

Results

This study included 1,254 menopausal women (66.7 ± 7.1 years). Among them, 727 attended the 6-year follow-up visit. Patients with lumbar osteoarthritis had an aBMD higher than those without lumbar osteoarthritis at the lumbar spine, but not at the hip. However, the aBMD significantly increased in all sites with the grade of K&L. In contrast, spine TBS was not different between patients with and without lumbar osteoarthritis (p = 0.70), and it was not correlated with K&L grade. Spine TBS and aBMD at all sites were negatively correlated with age (p < 0.0001). Body mass index was correlated positively with aBMD and negatively with spine TBS (p < 0.0001). The 6-year change of aBMD was significant in the hip and nonsignificant in the lumbar spine. That of TBS was significant, with a 3.3 % decrease (p < 0.0001), independent of K&L grade (p = 0.28).

Conclusion

In postmenopausal women, lumbar osteoarthritis leads to an increase in lumbar spine aBMD. In contrast, spine TBS is not affected by lumbar osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Schuit SC, Van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  3. Kanis JA, Adachi JD, Cooper C et al (2013) Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of IOF. Osteoporos Int 24:2763–2764

    Article  CAS  PubMed  Google Scholar 

  4. Fraser LA, Langsetmo L, Berger C et al (2011) Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int 22:829–837

    Google Scholar 

  5. Mazess RB, Gifford CA, Bisek JP, Barden HS, Hanson JA (1991) DEXA measurement of spine density in the lateral projection. I: methodology. Calcif Tissue Int 49:235–239

    Article  CAS  PubMed  Google Scholar 

  6. Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH (1992) Reproducibility of lateral spine scans using dual energy X-ray absorptiometry. Calcif Tissue Int 51:255–258

    Article  CAS  PubMed  Google Scholar 

  7. Pothuaud L, Barthe N, Krieg MA et al (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176

    Article  PubMed  Google Scholar 

  8. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy x-ray absorptiometry acquisition, and 3-diensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 1:302–312

    Article  Google Scholar 

  9. Roux JP, Wegrzyn J, Boutroy S, Bouxein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex-vivo study. Osteoporos Int 24:2455–2460

    Article  CAS  PubMed  Google Scholar 

  10. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787

    Article  PubMed  Google Scholar 

  11. Silva BC, Boutroy S, Zhang C et al (2013) Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 98:1963–1970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24:77–85

    Google Scholar 

  13. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26:2762–2769

    Article  PubMed  Google Scholar 

  14. Iki M, Tamaki J, Kadowaki E et al (2014) Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese population-based osteoporosis (JPOS) cohort study. J Bone Miner Res 29:399–407. doi:10.1002/jbmr.2048

    Article  PubMed  Google Scholar 

  15. Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181

    Article  PubMed  Google Scholar 

  16. Bréban S, Briot K, Kolta S et al (2012) Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 15:260–266

    Article  PubMed  Google Scholar 

  17. Briot K, Paternotte S, Kolta S et al (2013) Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: The OPUS study. Bone 57:232–236

    Article  PubMed  Google Scholar 

  18. Gluer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 19:782–793

    Article  PubMed  Google Scholar 

  19. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthritis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kellgren JH, Lawrence JS (1952) Rheumatism in miners. Part II: x-ray study. Brit J Industr Med 9:197–207

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N (2013) Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int 24:2837–2846. doi:10.1007/s00198-013-2384-8

    Article  CAS  PubMed  Google Scholar 

  22. Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford study. Ann Rheum Dis 53:158–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nevitt MC, Lane NE, Scott JC et al (1995) Radiographic osteoarthritis of the hip and bone mineral density. The Study of Osteoporotic Fractures Research Group. Arthritis Rheum 38:907–916

    Article  CAS  PubMed  Google Scholar 

  24. Malemud CJ (2010) Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging 27:95–115

    Article  CAS  PubMed  Google Scholar 

  25. Cicuttini FM, Spector T (1996) Genetics of osteoarthritis. Ann Rheum Dis 55:665–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 20:788–804

    Article  CAS  PubMed  Google Scholar 

  27. Nevitt MC, Felson DT (1996) Sex hormones and the risk of osteoarthritis in women: epidemiological evidence. Ann Rheum Dis 55:673–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Abdin-Mohamed M, Jameson K, Dennison EM, Cooper C, Arden NK, Hertfordshire Cohort Study Group (2009) Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis. Osteoarthr Cartil 17:174–177

    Article  CAS  PubMed  Google Scholar 

  29. Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analysing the odds of vertebral fracture. Calcif Tissue Int 86:104–109

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kolta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolta, S., Briot, K., Fechtenbaum, J. et al. TBS result is not affected by lumbar spine osteoarthritis. Osteoporos Int 25, 1759–1764 (2014). https://doi.org/10.1007/s00198-014-2685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2685-6

Keywords

Navigation