Skip to main content
Log in

Bone microdamage: a clinical perspective

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Microdamage accumulation due to fatigue loading may lead to fracture. In addition, several studies using animal models have suggested in recent years that bisphosphonates might increase microdamage accumulation.

Methods

We have reviewed the literature after a PubMed search, to examine the techniques to look for microcracks, the relationship between microdamage and bone strength, and the influence of anti-osteoporosis agents.

Results

Currently, the search for microcracks relies on bulk staining of bone samples, which are then examined on optic microscopy and fluorescence or confocal microscopy. The accumulation of microdamage is associated with fatigue loading and is likely to trigger targeted bone remodeling, especially in cortical bone. Several studies examining beagle dogs receiving bisphosphonates have shown a dose-dependent accumulation of microdamage in bone, with conflicting results regarding the consequences on bone mechanical properties. In living humans, obtaining data is limited to the iliac crest bone. The potential association between long-term bisphosphonate use and microcrack accumulation at the iliac crest bone has not been established unequivocally.

Conclusions

Bone microdamage is critical in the understanding of bone quality. Assessment of microdamage is technically difficult, especially in humans. The clinical impact of microdamage potentially induced by bone drugs has not been established in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Krajcinovic D (1984) Continuum damage mechanics. Appl Mech Rev 37:1–5

    Google Scholar 

  2. Mori S, Burr DB (1996) Increased intracortical remodeling following fatigue damage. Bone 14:103–109

    Article  Google Scholar 

  3. Burr DB, Turner CH, Naick P, Forwood MR, Ambrosius W, Hasan MS, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31:337–345

    Article  PubMed  CAS  Google Scholar 

  4. Frost HM (1960) Presence of microscopic cracks in vivo in bone. H Ford Hosp Med Bull 8:27–35

    Google Scholar 

  5. Burr DB, Martin DB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200

    Article  PubMed  CAS  Google Scholar 

  6. Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14:103–109

    Article  PubMed  CAS  Google Scholar 

  7. Bentolila V, Boyce TM, Fyhrie DP et al (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–281

    Article  PubMed  CAS  Google Scholar 

  8. Burr DB (2002) Targeted and non targeted remodeling. Bone 30:2–4

    Article  PubMed  CAS  Google Scholar 

  9. Parfitt AM (2002) Targeted and non targeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7

    Article  PubMed  CAS  Google Scholar 

  10. Mashiba T, Hirano T, Turner CH, Forwood M, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  11. Mashiba T, Turner CH, Hirano T, Forwood M, Johnston CC, Burr DB (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biochemical properties in clinically relevant skeletal sites in beagles. Bone 28:524–531

    Article  PubMed  CAS  Google Scholar 

  12. Komatsubara S, Mori S, Mashiba T, Ito M, Li J, Kaji Y, Akiyama T, Miyamoto K, Cao Y, Kawanashi J, Norimatsu H (2003) Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res 18:512–520

    Article  PubMed  CAS  Google Scholar 

  13. Forwood MR, Burr DB, Takano Y, Eastman DF, Smith PN, Schwardt JD (1995) Risedronate treatment does not increase microdamage in the canine femoral neck. Bone 16:643–650

    Article  PubMed  CAS  Google Scholar 

  14. Allen MR, Iwata K, Phipps R, Burr DB (2006) Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone 39:872–879

    Article  PubMed  CAS  Google Scholar 

  15. Forwood MR, Parker AW (1989) Microdamage in response to repetitive torsional loading in the rat tibia. Calcif Tissue Int 45:47–53

    Article  PubMed  CAS  Google Scholar 

  16. Allen MR, Burr DB (2008) Changes in vertebral strength density and energy absorption density relationships following bisphosphonate treatment in beagle dogs. Osteoporos Int 19:95–99

    Article  PubMed  CAS  Google Scholar 

  17. Burr DB, Stafford T (1990) Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin Orthop Rel Res 260:305–308

    Google Scholar 

  18. Burr DB, Hooser M (1995) Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17:431–433

    Article  PubMed  CAS  Google Scholar 

  19. Lee TC, Myers ER, Hayes WC (1998) Florescence-aided detection of microdamage in compact bone. J Anat 193:179–184

    Article  PubMed  Google Scholar 

  20. Huja SS, Hasan MS, Pidaparti R, Turner CH, Garetto P, Burr DB (1999) Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading. J Biomech 32:1243–1249

    Article  PubMed  CAS  Google Scholar 

  21. Boyce TM, Fyhrie SP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations inhuman compact bone bending fatigue. J Orthop Res 16:322–329

    Article  PubMed  CAS  Google Scholar 

  22. Fazzalari NL, Forwood MR, Manthey BA, Smith K, Kolesik P (1998) Three-dimensional confocal images of microdamage in cancellous bone. Bone 23:373–378

    Article  PubMed  CAS  Google Scholar 

  23. O’Brien FJ, Taylor D, Dickson GR, Lee TC (2000) Visualization of three dimensional microcracks in compact bone. J Anat 197:413–420

    Article  PubMed  Google Scholar 

  24. Taylor D, Lee TC (1998) Measuring the shape and size of microcracks in bone. J Biomech 31:1177–1180

    Article  PubMed  CAS  Google Scholar 

  25. Fazzalari NL, Kuliwaba JS, Forwood MR (2002) Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31:697–702

    Article  PubMed  CAS  Google Scholar 

  26. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ, Giehl M, Gowin W (2003) Detecting microdamage in bone. J Anat 203:161–172

    Article  PubMed  CAS  Google Scholar 

  27. Zarrinkalam KH, Kuliwaba JS, Martin RB, Wallwork MAB, Fazzalari NL (2005) New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes. Eur J Morphol 42:81–90

    Article  PubMed  CAS  Google Scholar 

  28. Mori S, Harruff R, Ambrosius W, Burr DB (1997) Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21:521–526

    Article  PubMed  CAS  Google Scholar 

  29. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  PubMed  CAS  Google Scholar 

  30. Wenzel TE, Schaffler MB, Fyhrie DP (1996) In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95

    Article  PubMed  CAS  Google Scholar 

  31. Arlot M, Burt-Pichat B, Roux JP, Vashishth D, Bouxsein M, Delmas PD (2008) Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J Bone Miner Res 23:1613–1618

    Article  PubMed  Google Scholar 

  32. Hasewaga K, Turner CH, Chen J, Burr DB (1995) Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin Orthop Rel Res 311:190–198

    Google Scholar 

  33. Sornay-Rendu E, Allard C, Munoz F, Duboeuf F, Delmas PD (2006) Disc space narrowing as a new risk factor for vertebral fracture: the OFELY study. Arthritis Rheum 54:1262–1269

    Article  PubMed  Google Scholar 

  34. Twomey LT, Taylor JR (1987) Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop Rel Res 224:97–104

    Google Scholar 

  35. Chapurlat RD, Arlot M, Burt-Pichat B, Chavassieux P, Roux JP, Portero-Muzy N, Delmas PD (2007) Microcrack frequency and bone remodelling in postmenopausal osteoporotic women: a bone biopsy study. J Bone Miner Res 22:1502–1509

    Article  PubMed  CAS  Google Scholar 

  36. Stepan JJ, Burr DB, Pavo I, Sipos A, Michalska D, Li J, Fahrleitner-Pammer A, Petto H, Westmore M, Michalsky D, Sato M, Dobnig H (2007) Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women. Bone 41:378–385

    Article  PubMed  Google Scholar 

  37. Diab T, Condon KW, Burr DB, Vashishth D (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38:427–431

    Article  PubMed  Google Scholar 

  38. Waldorff EI, Goldstein SA, McCreadie BR (2007) Age-dependent microdamage removal following mechanically induced microdamage in trabecular bone in vivo. Bone 40:425–432

    Article  PubMed  Google Scholar 

  39. Nagaraja S, Lin ASP, Guldberg RE (2007) Age-related changes in trabecular bone microdamage initiation. Bone 40:973–980

    Article  PubMed  Google Scholar 

  40. Vashishth D, Verborgt O, Divine G, Schaffler MB, Eyhrie DP (2000) Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26:375–380

    Article  PubMed  CAS  Google Scholar 

  41. Schaffler MB, Radin EL, Burr DB (1989) Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214

    Article  PubMed  CAS  Google Scholar 

  42. Pattin CA, Caler WE, Carter DR (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29:69–79

    Article  PubMed  CAS  Google Scholar 

  43. Schaffler MB, Radin EL, Burr DB (1990) Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone 11:321–326

    Article  PubMed  CAS  Google Scholar 

  44. Zioupos P, Currey JD (1994) The extent of microcracking and the morphology of microcracks in damaged bone. J Mat Sci 29:978–986

    Article  Google Scholar 

  45. Pidaparti RM, Wang QY, Burr DB (2001) Modeling fatigue damage evolution in bone. Biomed Mater Eng 11:69–78

    PubMed  CAS  Google Scholar 

  46. Currey J, Brear K, Zioupos P (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29:257–260

    Article  PubMed  CAS  Google Scholar 

  47. Chamay A (1970) Mechanical and morphological aspects of experimental overload and fatigue in bone. J Biomech 3:263–270

    Article  PubMed  CAS  Google Scholar 

  48. Currey JD, Brear K (1974) Tensile yield in bone. Calcif Tissue Res 15:173–179

    Article  PubMed  CAS  Google Scholar 

  49. Reilly GC, Currey JD (1999) The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J Exp Biol 202:543–552

    PubMed  CAS  Google Scholar 

  50. Tschantz P, Rutishauser E (1967) La surcharge mécanique de l'os vivant. Ann Anat Path 12:223–248

    CAS  Google Scholar 

  51. Ebacher V, Tang C, McKay H, Oxland TR, Guy P, Wang R (2007) Strain distribution and cracking behavior of human bone during bending. Bone 40:1265–1275

    Article  PubMed  Google Scholar 

  52. Vashishth D, Behiri JC, Bonfield W (1997) Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 30:763–769

    Article  PubMed  CAS  Google Scholar 

  53. Vashishth D, Tanner KE, Bonfield W (2000) Contribution, development and morphology of microcracking in cortical bone during crack propagation. J Biomech 33:1168–1174

    Article  Google Scholar 

  54. Diab T, Vashishth D (2005) Effects of damage morphology on cortical bone fragility. Bone 37:96–102

    Article  PubMed  CAS  Google Scholar 

  55. Mohsin S, O’Brien FJ, Lee TC (2006) Osteonal crack barriers in ovine compact bone. J Anat 208:81–89

    Article  PubMed  CAS  Google Scholar 

  56. Diab T, Vashishth D (2007) Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 40:612–618

    Article  PubMed  Google Scholar 

  57. Wang X, Zauel RR, Rao SD, Fyhrie DP (2008) Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical stereology). Bone 42:1184–1192

    Article  PubMed  Google Scholar 

  58. Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788

    Article  PubMed  CAS  Google Scholar 

  59. Muir P, Sample SJ, Barrett JG, McCarthy J, Vanderby R Jr, Markerl MD, Prokuski LJ, Kalscheur VL (2007) Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow. Bone 40:948–956

    Article  PubMed  Google Scholar 

  60. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15:60–67

    Article  PubMed  CAS  Google Scholar 

  61. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, Reeve J, Skerry TM, Lanyon LE (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–C943

    PubMed  CAS  Google Scholar 

  62. Martin RB (2002) Is all cortical bone remodeling initiated by microdamage? Bone 30:8–13

    Article  PubMed  CAS  Google Scholar 

  63. Flora L, Hassing GS, Parfitt AM, Villaneuva AR (1980) Comparative skeletal effects of two diphosphonates in dogs. Met Bone Dis 2:S389–S407

    Google Scholar 

  64. Boyce BF, Smith L, Fogelman I, Johnston E, Ralston S, Boyle IT (1984) Focal osteomalacia due to low-dose diphosphonate therapy in Paget’s disease. Lancet 1(8381):821–824

    Article  PubMed  CAS  Google Scholar 

  65. Mashiba T, Turner CH, Hirano T, Forwood M, Jacob DS, Johnston CC, Burr DB (2001) Effects of high-dose etidronate treatment on microdamage accumulation and biomechanical properties in beagle dog before occurrence of spontaneous fractures. Bone 29:271–278

    Article  PubMed  CAS  Google Scholar 

  66. Li J, Mashiba T, Burr DB (2001) Bisphosphonates treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int 69:281–286

    Article  PubMed  CAS  Google Scholar 

  67. Allen MR, Reinwald S, Burr DB (2008) Alendronate reduces bone toughness of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int 82:354–360

    Article  PubMed  CAS  Google Scholar 

  68. Allen MR, Burr DB (2007) Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res 22:1759–1765

    Article  PubMed  CAS  Google Scholar 

  69. Nyman JS, Yeh OC, Hazelwood SJ, Martin RB (2004) A theoretical analysis of long-term bisphosphonate effects on trabecular bone volume and microdamage. Bone 35:296–305

    Article  PubMed  CAS  Google Scholar 

  70. Li J, Sato M, Jerome C, Turner CH, Fan Z, Burr DB (2005) Microdamage accumulation in the monkey vertebra does not occur when bone turnover is suppressed by 50% or less with estrogen or raloxifene. J Bone Miner Metab 23S:48–54

    Article  Google Scholar 

  71. Allen MR, Iwata K, Sato M, Burr DB (2006) Raloxifene enhances vertebral mechanical properties independent of bone density. Bone 39:1130–1135

    Article  PubMed  CAS  Google Scholar 

  72. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  73. Ensrud KE, Black DM, Palermo L et al (1997) Treatment with alendronate prevents fractures in women at highest risk. Arch Intern Med 157:2617–2624

    Article  PubMed  CAS  Google Scholar 

  74. Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures. JAMA 280:2077–2082

    Article  PubMed  CAS  Google Scholar 

  75. Odvina CV, Zerwekh JE, Rao S, Maalouf N, Gottshalk FA, Pak CYC (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  PubMed  CAS  Google Scholar 

  76. Lenart BA, Lane J (2008) Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 358:1304–1305

    Article  PubMed  CAS  Google Scholar 

  77. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG (2008) Low energy femoral shaft fractures associated with alendronate use. J Orthop Trauma 22:346–350

    Article  PubMed  Google Scholar 

  78. Goh SK, Yang KY, Koh JS, Wong MK, Chua SY, Chua DT et al (2007) Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg (Br) 89:349–353

    Google Scholar 

  79. Kwek EB, Kwek EB, Goh SK, Koh JS, Png MA, Howe TS (2008) An emerging pattern of subtrochanteric stress fractures: a long term complication of alendronate therapy? Injury 39:224–231

    Article  PubMed  Google Scholar 

  80. Lenart BA, Leviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van Der Meulen MC, Lorich DG, Lane JM. (2008) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case-control study. Osteoporos Int (in press), online

  81. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Libermann IA (2004) Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 90:1189–1199

    Article  Google Scholar 

  82. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, Wehren LE, Lombardi A, Santora AC, Cummings SR (2006) Effects of continuing or stopping alendronate after 5 years of treatment the fracture intervention trial long-term extension (FLEX): a randomized trial. JAMA 296:2927–2938

    Article  PubMed  CAS  Google Scholar 

  83. Chapurlat RD, Arlot M, Delmas PD (2008) Low bone turnover and microdamage? How and where to assess it ? J Bone Miner Res 23:1152–1153

    Article  Google Scholar 

  84. Thurner PJ, Wyss P, Voide R, Stauber M, Stampanoni M, Sennhauser U, Muller R (2006) Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone 39:289–299

    Article  PubMed  CAS  Google Scholar 

  85. Larrue A, Rattner A, Laroche N, Vico L, Peyrin F (2007) Feasibility of microcrack detection in human trabecular bone images from 3D synchrotron microtomography. Conf Proc IEEE Eng Med Biol Soc 2007:3918–3921

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Chapurlat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapurlat, R.D., Delmas, P.D. Bone microdamage: a clinical perspective. Osteoporos Int 20, 1299–1308 (2009). https://doi.org/10.1007/s00198-009-0899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0899-9

Keywords

Navigation