Skip to main content

Advertisement

Log in

A new, powerful player in lipoprotein metabolism: brown adipose tissue

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Important causes for modern epidemics such as obesity, diabetes, and cardiovascular disease are over- and malnutrition. Dietary as well as endogenous lipids are transported through the bloodstream in lipoproteins, and disturbances in lipoprotein metabolism are associated with atherosclerosis, heart disease, and diabetes. Recent findings reveal biological principles—how lipoproteins, in particular triglyceride-rich lipoproteins, are metabolized and what factors regulate their processing. The fate of triglycerides delivered by lipoproteins is quite simple: either they can be stored or they can be utilized for combustion or biosynthetic pathways. In the healthy state, fatty acids derived from triglycerides can be burned in the heart, muscle, and other organs for actual work load, or they can be stored in white adipose tissue. The combination of storage and combustion is realized in brown adipose tissue (BAT), a peripheral organ that was long thought to be only of relevance in small mammals: Recent data however prove that BAT plays an important role in human adults. Here, we will review recent insights on how BAT controls triglyceride clearance and the possible implications for the treatment of chronic diseases caused by lipid mishandling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hegele RA (2009) Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet 10:109–121

    Article  PubMed  CAS  Google Scholar 

  2. Williams KJ (2008) Molecular processes that handle—and mishandle—dietary lipids. J Clin Invest 118:3247–3259

    Article  PubMed  CAS  Google Scholar 

  3. Olivecrona G, Olivecrona T (2010) Triglyceride lipases and atherosclerosis. Curr Opin Lipidol 21:409–415

    Article  PubMed  CAS  Google Scholar 

  4. Brown RJ, Rader DJ (2007) Lipases as modulators of atherosclerosis in murine models. Curr Drug Targets 8:1307–1319

    Article  PubMed  CAS  Google Scholar 

  5. Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    Article  PubMed  CAS  Google Scholar 

  6. Davies BS, Beigneux AP, Barnes RH, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyren R, Goldberg I, Olivecrona G et al (2010) GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 12:42–52

    Article  PubMed  CAS  Google Scholar 

  7. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417

    Article  PubMed  CAS  Google Scholar 

  8. Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, Sartoretto J, Michel T, Plutzky J (2009) PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest 119:110–124

    PubMed  CAS  Google Scholar 

  9. Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921

    Article  PubMed  CAS  Google Scholar 

  10. Greenwood MR (1985) The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper. Int J Obes 9(Suppl 1):67–70

    PubMed  CAS  Google Scholar 

  11. Nilsson SK, Heeren J, Olivecrona G, Merkel M (2011) Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219:15–21

    Article  PubMed  CAS  Google Scholar 

  12. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280:21553–21560

    Article  PubMed  CAS  Google Scholar 

  13. Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk KW (2004) ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 279:27941–27947

    Article  PubMed  CAS  Google Scholar 

  14. Lichtenstein L, Kersten S (2010) Modulation of plasma TG lipolysis by angiopoietin-like proteins and GPIHBP1. Biochim Biophys Acta 1801:415–420

    Article  PubMed  CAS  Google Scholar 

  15. Peterfy M, Ben Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Pullinger CR, Frost PH, Kane JP, Malloy MJ, Reue K et al (2007) Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat Genet 39:1483–1487

    Article  PubMed  CAS  Google Scholar 

  16. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273

    Article  PubMed  CAS  Google Scholar 

  17. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Hegele RA (2007) Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis 6:23

    Article  PubMed  Google Scholar 

  19. Havel RJ, Gordon RS Jr (1960) Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest 39:1777–1790

    Article  PubMed  CAS  Google Scholar 

  20. Leaf DA (2008) Chylomicronemia and the chylomicronemia syndrome: a practical approach to management. Am J Med 121:10–12

    Article  PubMed  Google Scholar 

  21. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA et al (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322:1702–1705

    Article  PubMed  CAS  Google Scholar 

  22. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Article  PubMed  CAS  Google Scholar 

  23. von Eckardstein A, Hersberger M, Rohrer L (2005) Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care 8:147–152

    Article  Google Scholar 

  24. Heeren J, Niemeier A, Merkel M, Beisiegel U (2002) Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J Mol Med (Berl) 80:576–584

    Article  CAS  Google Scholar 

  25. Laatsch A, Merkel M, Talmud PJ, Grewal T, Beisiegel U, Heeren J (2009) Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis 204:105–111

    Article  PubMed  CAS  Google Scholar 

  26. Stanford KI, Bishop JR, Foley EM, Gonzales JC, Niesman IR, Witztum JL, Esko JD (2009) Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 119:3236–3245

    PubMed  CAS  Google Scholar 

  27. MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117:153–164

    Article  PubMed  CAS  Google Scholar 

  28. Stanford KI, Wang L, Castagnola J, Song D, Bishop JR, Brown JR, Lawrence R, Bai X, Habuchi H, Tanaka M et al (2010) Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem 285:286–294

    Article  PubMed  CAS  Google Scholar 

  29. Fuki IV, Kuhn KM, Lomazov IR, Rothman VL, Tuszynski GP, Iozzo RV, Swenson TL, Fisher EA, Williams KJ (1997) The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest 100:1611–1622

    Article  PubMed  CAS  Google Scholar 

  30. Fuki IV IV, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275:31554

    Article  PubMed  CAS  Google Scholar 

  31. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  PubMed  CAS  Google Scholar 

  32. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  33. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53(Suppl 1):S130–S135

    Article  PubMed  CAS  Google Scholar 

  34. Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797:785–791

    Article  PubMed  CAS  Google Scholar 

  35. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73:9–15

    Article  PubMed  CAS  Google Scholar 

  36. Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35

    Article  PubMed  CAS  Google Scholar 

  37. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209

    Article  PubMed  CAS  Google Scholar 

  38. Vallerand AL, Perusse F, Bukowiecki LJ (1987) Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am J Physiol 253:E179–E186

    PubMed  CAS  Google Scholar 

  39. Vallerand AL, Perusse F, Bukowiecki LJ (1990) Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. Am J Physiol 259:R1043–R1049

    PubMed  CAS  Google Scholar 

  40. Gasparetti AL, de Souza CT, Pereira-da-Silva M, Oliveira RL, Saad MJ, Carneiro EM, Velloso LA (2003) Cold exposure induces tissue-specific modulation of the insulin-signalling pathway in Rattus norvegicus. J Physiol 552:149–162

    Article  PubMed  CAS  Google Scholar 

  41. Smith SA, Young P, Cawthorne MA (1986) Quantification in vivo of the effects of insulin on glucose utilization in individual tissues of warm- and cold-acclimated rats. Biochem J 237:789–795

    PubMed  CAS  Google Scholar 

  42. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    Article  PubMed  CAS  Google Scholar 

  43. Carneheim C, Nedergaard J, Cannon B (1984) Beta-adrenergic stimulation of lipoprotein lipase in rat brown adipose tissue during acclimation to cold. Am J Physiol 246:E327–E333

    PubMed  CAS  Google Scholar 

  44. Carneheim C, Nedergaard J, Cannon B (1988) Cold-induced beta-adrenergic recruitment of lipoprotein lipase in brown fat is due to increased transcription. Am J Physiol 254:E155–E161

    PubMed  CAS  Google Scholar 

  45. Williams KJ, Fisher EA (2011) Globular warming: how fat gets to the furnace. Nat Med 17:157–159

    Article  PubMed  CAS  Google Scholar 

  46. Rutledge JC, Goldberg IJ (1994) Lipoprotein lipase (LpL) affects low density lipoprotein (LDL) flux through vascular tissue: evidence that LpL increases LDL accumulation in vascular tissue. J Lipid Res 35:1152–1160

    PubMed  CAS  Google Scholar 

  47. Rutledge JC, Woo MM, Rezai AA, Curtiss LK, Goldberg IJ (1997) Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res 80:819–828

    Article  PubMed  CAS  Google Scholar 

  48. Rutledge JC, Mullick AE, Gardner G, Goldberg IJ (2000) Direct visualization of lipid deposition and reverse lipid transport in a perfused artery: roles of VLDL and HDL. Circ Res 86:768–773

    Article  PubMed  CAS  Google Scholar 

  49. Eiselein L, Wilson DW, Lame MW, Rutledge JC (2007) Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 292:H2745–H2753

    Article  PubMed  CAS  Google Scholar 

  50. Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called hibernating gland of lower mammals. Anat Anz 21:369–373

    Google Scholar 

  51. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  52. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  53. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  PubMed  CAS  Google Scholar 

  54. Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  55. Nedergaard J, Cannon B (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 11:268–272

    Article  PubMed  CAS  Google Scholar 

  56. Enerback S (2010) Human brown adipose tissue. Cell Metab 11:248–252

    Article  PubMed  Google Scholar 

  57. Nedergaard J, Bengtsson T, Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13:238–240

    Article  PubMed  CAS  Google Scholar 

  58. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120

    Article  PubMed  CAS  Google Scholar 

  59. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    Article  PubMed  CAS  Google Scholar 

  60. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M (2011) Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19:1755–1760

    Article  Google Scholar 

  61. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerback S et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279

    Article  PubMed  CAS  Google Scholar 

  62. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  PubMed  CAS  Google Scholar 

  63. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM, Liu Q, Kahn CR, Lodish HF (2011) Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 13:958–965

    Article  PubMed  CAS  Google Scholar 

  64. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    Article  PubMed  CAS  Google Scholar 

  65. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  PubMed  CAS  Google Scholar 

  66. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105

    Article  PubMed  CAS  Google Scholar 

  67. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108:143–148

    Article  PubMed  CAS  Google Scholar 

  68. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel DM, Rozman J, Hrabe dA, Nusing RM et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161

    Article  PubMed  CAS  Google Scholar 

  69. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R et al (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5:e11391

    Article  PubMed  Google Scholar 

  70. Shabalina IG, Backlund EC, Bar-Tana J, Cannon B, Nedergaard J (2008) Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism. Biochim Biophys Acta 1777:642–650

    Article  PubMed  CAS  Google Scholar 

  71. Beck V, Jaburek M, Demina T, Rupprecht A, Porter RK, Jezek P, Pohl EE (2007) Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J 21:1137–1144

    Article  PubMed  CAS  Google Scholar 

  72. Huang SG (2003) Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria. Arch Biochem Biophys 412:142–146

    Article  PubMed  CAS  Google Scholar 

  73. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  PubMed  CAS  Google Scholar 

  74. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  PubMed  CAS  Google Scholar 

  75. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

AB is supported by a Postdoctoral Fellowship Award from the European Atherosclerosis Society and by the DFG Graduiertenkolleg 1459. This work was supported by the Landesexzellenzinitiative Hamburg (NAME) and by grants from the DFG to JH and MM (ME1507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Heeren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartelt, A., Merkel, M. & Heeren, J. A new, powerful player in lipoprotein metabolism: brown adipose tissue. J Mol Med 90, 887–893 (2012). https://doi.org/10.1007/s00109-012-0858-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0858-3

Keywords

Navigation