Skip to main content
Log in

Evaluation of radioiodinatedS-iodo-3-(2(S)-anotidinyimethoxy)pyridine as a ligand for SPECT investigations of brain nicotinic acetylcholine receptors

  • Original Articles
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

5-Iodo-3-(2(S)-azetidinylmethoxy)pyridine (5IA), an A-85380 analog iodinated at the 5-position of the pyridine ring, was evaluated as a radiopharmaceutical for investigating brain nicotinic acethylcholine receptors (nAChRs) by single photon emission computed tomography (SPECT). [123/125I]5IA was synthesized by the iododestannylation reaction under no-carrier-added conditions and purified by high-performance liquid chromatography (HPLC) with high radiochemical yield (50%), high radiochemical purity (>98%), and high specific radioactivity (>55 GBq/μmol). The binding affinity of 5IA for brain nAChRs was measured in terms of displacement of [3H]cytisine and [125I]5IA from binding sites in rat cortical membranes. The binding data revealed that the affinity of 5IA was the same as that of A-85380 and more than seven fold higher than that of (−)-nicotine, and that 5IA bound selectively to the α4β2 nAChR subtype. Biodistribution studies in rats indicated that the brain uptake of [125I]5IA was rapid and profound. Regional cerebral distribution studies in rats demonstrated that the accumulation of [125I]5IA was consistent with the density of high affinity nAChRs with highest uptake observed in the nAChR-rich thalamus, moderate uptake in the cortex and lowest uptake in the cerebellum. Administration of the nAChR agonists (−)-cytisine and (−)-nicotine reduced the uptake of [125I]5IA in all regions studied with most pronounced reduction in the thalamus, and resulted in similar levels of radioactivity throughout the brain. [125I]5IA binding sites were shown to be saturable with unlabeled 5IA. Behavioral studies in mice demonstrated that 5IA did not show signs of behavioral toxicity. Furthermore, SPECT studies with [123I]5IA in the common marmoset demonstrated appropriate brain uptake and regional localization for a high-affinity nAChR imaging radiopharmaceutical. These results suggested that [123I]5IA is a promising radiopharmaceutical for SPECT studies of central nAChRs in human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Norberg A, Winbald B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains.Neurosci Lett 1986; 72: 115–119.

    Article  Google Scholar 

  2. Whitohouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease.Brain Res 1986; 371: 146–151.

    Article  Google Scholar 

  3. Kellar KJ, Whitehouse PJ, Martino-Barrows AM, Marcus K, Price DL. Muscarinic and nicotinic cholinergic binding sites in Alzheimer’s disease cerebral cotex.Brain Res 1987; 436: 62–68.

    Article  PubMed  CAS  Google Scholar 

  4. Whitohouse PJ, Martino AM, Wagster MV, Price DL, Mayeux L, Atack JR, et al. Reductions in [3H]-nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study.Neurology 1988; 38: 720–723.

    Google Scholar 

  5. Whitohouse PJ, Martino AM, Marcus KA, Zweig RM, Singer HS, Price DL, et al. Reductions in acetylcholine and nicotine binding in several degenerative diseasesArch Neurol 1988; 45: 722–724.

    Google Scholar 

  6. London ED, Ball MJ, Waller SB. Nicotinic binding sites in cerebral cortex and hippocampus in Alzheimer’s dementia.Neurochem Res 1989; 14: 745–750.

    Article  PubMed  CAS  Google Scholar 

  7. Rinne JO, Myllykyla R, Lonnberg P, Marjamaki P. A postmortem study of brain nicotinic receptors in Parkinso’s and Alzheimer’s disease.Brain Res 1991; 547: 167–170.

    Article  PubMed  CAS  Google Scholar 

  8. Giacobini E. Nicotinic cholinergic receptors in human brain: effects of aging and Alzheimer.Adv Exp Med Biol 1991; 296: 303–315.

    PubMed  CAS  Google Scholar 

  9. Gotti C, Formasari D, Clementi F. Human neuronal nicotinic receptors.Prog Neurobiol 1997; 53: 199–237.

    Article  PubMed  CAS  Google Scholar 

  10. Warpman U, Nordberg A. Epibatidine and ABT 418 reveal selective losses of α4α2 nicotinic receptors in Alzheimer brains.Neuro Report 1995; 6: 2419–2423.

    CAS  Google Scholar 

  11. Benewell MEM, Balfour DJK, Anderson JM. Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain.J Neurochem 1988; 50: 1243–1247.

    Article  Google Scholar 

  12. Sales SL, Beneherif M, Fluhler FN, Lippielio PM, Upregulation of nicotinic acetylcholine receptors following chronic exposure of rats to mainstream cigarette smoker or α4α2 receptors to nicotine.Biochem Pharmacol 1995; 50: 2001–2008.

    Article  Google Scholar 

  13. Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain.J Pharmacol Exp Ther 1997; 282: 7–13.

    PubMed  CAS  Google Scholar 

  14. Irle E, Markowitsch HJ. Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory.Ann Neurol 1985; 14: 1025–1032.

    Google Scholar 

  15. Decker MW, Brioni JD, Bannon AW, Americ SP. Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics.Life Sci 1995; 56: 545–570.

    Article  PubMed  CAS  Google Scholar 

  16. Levin ED, Rose JE. Acute and chronic nicotinic interactions with dopamine systems and working memory performance.Ann NY Acad Sci 1995; 757: 245–252.

    Article  PubMed  CAS  Google Scholar 

  17. Jones S, Sudweeks S, Yakel JL. Nicotinic receptors in the brain: correlating physiology with function.Trends Neurosci 1999; 22: 555–561.

    Article  PubMed  CAS  Google Scholar 

  18. Kenneth Lloyd G, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets.J Pharmacol Exp Ther 2000; 292: 461–467.

    Google Scholar 

  19. Saji H, Watanabe A, Kiyono Y, Magata Y, Iida Y, Takaishi Y, et al. Application of [125I](S)-5-iodonicotine, a new radioiodinated ligand, in the assay of nicotinic acetylcholine receptor binding in the brain.Biol Pharm Bull 1995; 18: 1463–1466.

    PubMed  CAS  Google Scholar 

  20. Saji H, Watanabe A, Magata Y, Ohmomo Y, Kiyono Y, Yamada Y, et al. Synthesis and characterization of radioiodinated (S)-5-iodonicotine: a new ligand for potential imaging of brain nicotinic cholinergic receptors by single photon emission computed tomography.Chem Pharm Bull 1997; 45: 284–290.

    PubMed  CAS  Google Scholar 

  21. Badio B, Daly JW. Epibatidine, a potent analgetic and nicotinic agonist.Mol Pharmacol 1994; 45: 563–569.

    PubMed  CAS  Google Scholar 

  22. Houghtling RA, Davila-Garcia MI, Kellar KJ. Characterization of (±)-[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain.Mol Pharmacol 1995; 48: 280–287.

    PubMed  CAS  Google Scholar 

  23. Perry DC, Kellar KJ.3H-epibatidine labels nicotinic receptors in rat brain: an autoradiographic study.J Pharmacol Exp Ther 1995; 275: 1030–1034.

    PubMed  CAS  Google Scholar 

  24. London ED, Sheffel U, Kimes AS, Kellar KJ.In vivo labeling of nicotinic acetylcholine receptors in the brain with [3H]epibatidine.Eur J Pharm 1995; 278: R1-R2.

    Article  CAS  Google Scholar 

  25. Scheffel U, Taylor GF, Kepler JA, Carroll FI, Kuhar MJ.In vivo labeling of neuronal nicotinic acetylcholine receptors with radiolabeled isomaers of norchloroepibatidine.NeuroReport 1995; 6: 2483–2488.

    Article  PubMed  CAS  Google Scholar 

  26. Horti AG, Ravert HT, London ED, Dannals RF. Synthesis of a radiotracer for studying nicotinic acetylcholine receptors by positron emission tomography:(±)-exo-2-(2-[18F]fluoro-5-pyridyl)7-azabicyclo[2.2.1]heptane.J Labell Comp Radiopharm 1996; 38: 355–366.

    Article  CAS  Google Scholar 

  27. Horti AG, Scheffel U, Stathis M, Finley P, Ravert HT, London ED, et al. Fluorine-18-FPH for PET imaging of nicotinic acetylcholine receptors.J Nucl Med 1997; 38: 1260–1265.

    PubMed  CAS  Google Scholar 

  28. Villemagne VL, Horti AG, Scheffel U, Ravert HT, Finley P, Clough DJ, et al. Imaging nicotinic acetylcholine receptors with Fluorine-18-FPH, an epibatidine analog.J Nucl Med 1997; 38: 1737–1741.

    PubMed  CAS  Google Scholar 

  29. Horti A, Scheffel U, Kimes AS, Musachio JL, Ravert HT. Mathews WB, et al. Synthesis and evaluation of [11C]-N-methylated analogs of epibatidine as tracers for PET studies of nicotinic acetylcholine receptors.J Med Chem 1998; 41: 4199–4206.

    Article  PubMed  CAS  Google Scholar 

  30. Musachio JL, Villemagne VL, Scheffel U, Stathis M, Finley P, Horti AG, et al. [125/123]IPH: a radioiodinated analog of epibatidine forin vivo studies of nicotinic acetylcholine receptors.Synapse 1997; 26: 392–399.

    Article  PubMed  CAS  Google Scholar 

  31. Musachio JL, Horti AG, London ED, Dannals RF. Synthesis of a radioiodinated analog of epibatidine: (±)-exo-2-(2-iodo-yridyl)7-azabicyclo[2.2.1]heptane forin vitro andin vivo studies of nicotinic acetylcholine receptors.J Labell Comp Radiopharm 1997; 39: 39–48.

    Article  CAS  Google Scholar 

  32. Abreo MA, Lin NH, Garvey DS, Gunn ED, Hettinger AM, Wasicak JT, et al. Novel 3-Pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors.J Med Chem 1996; 39: 817–825.

    Article  PubMed  CAS  Google Scholar 

  33. Sheridan RP, Nilakantan R, Dixon JS, Venkataraghavan R. The ensemble approach to distance geometry: application to the nicotinic pharmacophore.J Med Chem 1986; 29: 899–906.

    Article  PubMed  CAS  Google Scholar 

  34. Barlow RB, Johnson O. Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (−)-cytidine and (−)-lobeline hydrochloride and a comparison with (−)-nicotine and other nicotine-like compounds.Br J Pharmacol 1989; 98: 799–808.

    PubMed  CAS  Google Scholar 

  35. Glennon RA, Dukat M. Nicotinic cholinergic receptor pharmacophores. In:Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities. Arneric SP, Brioni JD (eds), New York; Wiley-Liss, 1999 271–284.

    Google Scholar 

  36. Koren AO, Horti AG, Mukhin AG, Gundisch D, Kimes AS, Dannals RF, et al. 2−, 5−, and 6-Halo3-(2(S)-azetidinyl-methoxy)pyridines: synthesis, affinity for nicotinic acetylcholine receptors, and molecular modeling.J Med Chem 1998; 41: 3690–3698.

    Article  PubMed  CAS  Google Scholar 

  37. Vaupel DB, Mukhin AG, Kimes AS, Horti AG, Koren AO, London ED.In vivo studies with [125I]-5-I-A-85380, a nicotinic acetylcholine receptor radioligand.NeuroReport 1998; 9: 2311–2317.

    Article  PubMed  CAS  Google Scholar 

  38. Musachio JL, Sceffel U, Finley PA, Zhan Y, Michizuki T, Wagner Jr HN, et al. 5-[I-125/123]Iodo-3(2(S)-azetidinyl-methoxy) pyridine, a radioiodinated analog of A-85380 forin vivo studies of central nicotinic acetylcholine receptors.Life Sci 1998; 62: 351–357.

    Article  Google Scholar 

  39. Chefer SI, Horti AG, Lee KS, Koren AO, Jones DW, Gorey JG, et al.In vivo imaging of brain nicotinic acetylcholine receptors with 5-[123I]iodo-A-85380, using single photon emission computed tomography.Life Sci 1998; 63: 355–360.

    Article  Google Scholar 

  40. Musachio JL, Villemagne VL, Sceffel UA, Dannals RF, Dogan AS, Yokoi F, et al. Synthesis of an I-123 analog of A-85380 and preliminary SPECT imaging of nicotinic receptors in baboon.Nucl Med Biol 1999; 26: 201–207.

    Article  PubMed  CAS  Google Scholar 

  41. Horti AG, Koren AO, Lee KS, Mukhin AG, Vaupel DB, Kimes AS, et al. Radiosynthesis and preliminary evaluation of 5-[123/123I]iodo-3(2(S)-azetidinylmethoxy)pyridine: a radioligand for nicotinic acetylcholine receptors.Nucl Med Biol 1999; 26: 175–182.

    Article  PubMed  CAS  Google Scholar 

  42. Pabreza LA, Dhawan S, Kellar KJ. [3H]cytisine binding to nicotinic cholinergic receptors in brain.Mol Pharmacol 1991; 39: 9–12.

    PubMed  CAS  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent.J Biol Chem 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  44. Cheng Y, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction.Biochem Pharmacol 1973; 22: 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  45. Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard.Brain Res 1970; 24: 372–376.

    Article  PubMed  CAS  Google Scholar 

  46. Saji H, Iida Y, Nakatsuka I, Kataoka M, Ariyoshi K, Magata Y, et al. Radioiodinated 2′-iododiazepam: a potential imaging agent for SPECT investigations of benzodiazepine receptors.J Nucl Med 1993; 34: 932–937.

    PubMed  CAS  Google Scholar 

  47. Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies.J Nucl Med 1995; 36: 2282–2287.

    PubMed  CAS  Google Scholar 

  48. Mukhin, AG, Gundisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, et al. 5-iodo-A-85380, an α4β2 subtype-selective ligand for nicotinic acetylcholine receptors.Mol Pharmcol 2000; 57: 642–649.

    CAS  Google Scholar 

  49. Del Toro E, Juiz J, Peng X, Lindstrom J, Criado M. Immunocytochemical localization of the α7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system.J Comp Neurol 1994; 349: 325–342.

    Article  Google Scholar 

  50. Kawamata J, Matusita H.Shikkan Moderu Doubutu Handobukku, Tokyo, 1982.

  51. Saji H, Magata Y, Yamada Y, Tajima K, Yonekura Y, Konishi J, et al. Synthesis of(S)-N-[methyl-11C]nicotine and its regional distribution in the mouse brain: a potential tracer for visualization of brain nicotinic receptors by positron emission tomography.Chem. Pharm Bull 1992; 40: 734–736.

    PubMed  CAS  Google Scholar 

  52. Norberg A, Alafuzoff I, Winblad B. Nicotinle and muscarinic subtypes in the human brain: changes with aging and dementia.J Neurosci Res 1992; 31: 103–111.

    Article  Google Scholar 

  53. Flesher JE, Scheffel U, London ED, Frost JJ.In vivo labeling of nicotinic cholinergic receptors in the brain with [3H]cytisine.Life Sci 1994; 54: 1883–1890.

    Article  PubMed  CAS  Google Scholar 

  54. Molina PE, Ding YS, Carroll FI, Liang F, Volkow ND, Pappas N, et al. Fluoro-norchloroepibatidine: preclinical assessment of acute toxicity.Nucl Med Biol 1997; 24: 743–747.

    Article  PubMed  CAS  Google Scholar 

  55. Studerman KA, Mahaffy LS, Akong M, Velicebebi G, Chavez-Noriega LE, Crona JH, et al. Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations α2β4, α3β4 and α4β4 stably expressed in HEK293 cells.J Pharmacol Exp Ther 1998; 284: 777–789.

    Google Scholar 

  56. Xiao Y, Meyer EL, Thompson JM, Surin A, Wroblewski J, Kellar KJ. Rat α3/β4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function.Mol Pharmacol Exp Ther 1998; 54: 322–333.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saji, H., Ogawa, M., Ueda, M. et al. Evaluation of radioiodinatedS-iodo-3-(2(S)-anotidinyimethoxy)pyridine as a ligand for SPECT investigations of brain nicotinic acetylcholine receptors. Ann Nucl Med 16, 189–200 (2002). https://doi.org/10.1007/BF02996300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02996300

Key words

Navigation