Skip to main content
Log in

Arterial fraction of cerebral blood volume in humans measured by positron emission tomography

  • Original Articles
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In quantitative functional neuroimaging with positron emission tomography (PET) and magnetic resonance imaging (MRI), cerebral blood volume (CBV) and its three components, arterial, capillary, and venous blood volumes are important factors. The arterial fraction for systemic circulation of the whole body has been reported to be 20–30%, but there is no report of this fraction in the brain. In the present study, we estimated the arterial fraction of CBV with PET in the living human brain. C15O and dynamic H2 15O PET studies were performed in each of seven, healthy subjects to determine the CBV and arterial blood volume (Va), respectively. A two-compartment model (influx: K1, efflux: k2) that takes Va into account was applied to describe the regional time-activity curve of dynamic H2 15O PET. K1, k2 and Va were calculated by a non-linear least squares fitting procedure. The Va and CBV values were 0.011±0.004 ml/ml and 0.031± 0.003 ml/ml (mean±SD), respectively, for cerebral cortices. The arterial fraction of CBV was 37%. Considering the limited first-pass extraction fraction of H2 15O, the true arterial fraction of CBV is estimated to be about 30%. The estimated arterial fraction of CBV was quite similar to that of the systemic circulation, whereas it was greater than that (16%) widely used for the measurement of cerebral metabolic rate of oxygen (CMRO2) using PET. The venous plus capillary fraction of CBV was 63–70% which is a important factor for the measurement of CMRO2 with MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method.J Cereb Blood Flow Metab 1983; 3: 416–424.

    PubMed  CAS  Google Scholar 

  2. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography.J Nucl Med 1984; 25: 177–187.

    PubMed  CAS  Google Scholar 

  3. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values.J Cereb Blood Flow Metab 1996; 16: 765–780.

    Article  PubMed  CAS  Google Scholar 

  4. Ito H, Hatazawa J, Murakami M, Miura S, Iida H, Bloomfield PM, et al. Aging effect on neutral amino acid transport at the blood-brain barrier measured withl-[2-18F]-fluorophenylalanine and PET.J Nucl Med 1995; 36: 1232–1237.

    PubMed  CAS  Google Scholar 

  5. Martin WR, Powers WJ, Raichle ME. Cerebral blood volume measured with inhaled C15O and positron emission tomography.J Cereb Blood Flow Metab 1987; 7: 421–426.

    PubMed  CAS  Google Scholar 

  6. Jezzard P, Song AW. Technical foundations and pitfalls of clinical fMRI.Neuroimage 1996; 4: S63–75.

    Article  Google Scholar 

  7. Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB. Determination of relative CMRO2 from CBF and BOLD changes: Significant increase of oxygen consumption rate during visual stimulation.Magn Reson Med 1999; 41: 1152–1161.

    Article  PubMed  CAS  Google Scholar 

  8. Hathout GM, Gambhir SS, Gopi RK, Kirlew KA, Choi Y, So G, et al. A quantitative physiologic model of blood oxygenation for functional magnetic resonance imagingInvest Radiol 1995; 30: 669–682.

    Article  PubMed  CAS  Google Scholar 

  9. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism.Proc Natl Acad Sci USA 1998; 95: 1834–1839.

    Article  PubMed  CAS  Google Scholar 

  10. Herscovitch P, Raichle ME. What is the correct value for the brain-blood partition coefficient for water?.J Cereb Blood Flow Metab 1985; 5: 65–69.

    PubMed  CAS  Google Scholar 

  11. Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A, et al. Myocardial tissue fraction—Correction for partial volume effects and measure of tissue viability.J Nucl Med 1991; 32: 2169–2175.

    PubMed  CAS  Google Scholar 

  12. Iida H, Miura S, Kanno I, Ogawa T, Uemura K. A new PET camera for noninvasive quantitation of physiological functional parametric images: Headtome-V-dual. InQuantification of Brain Function Using PET, Myers R, Cunningham V, Bailey D, Jones T (eds), San Diego; Academic Press, Inc., 1996: 57–61.

    Google Scholar 

  13. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function.J Cereb Blood Flow Metab 1986; 6: 536–545.

    PubMed  CAS  Google Scholar 

  14. Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S. et al. Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O] water and dynamic positron emission tomography.J Cereb Blood Flow Metab 1988; 8: 285–288.

    PubMed  CAS  Google Scholar 

  15. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters.J Soc Indust Appl Math 1963; 11: 431–441.

    Article  Google Scholar 

  16. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis.J Nucl Med 1983; 24: 782–789.

    PubMed  CAS  Google Scholar 

  17. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, et al. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography.J Cereb Blood Flow Metab 1987; 7: 143–153.

    PubMed  CAS  Google Scholar 

  18. Akaike H. A new look at the statistical model identification.IEEE Trans Automat Contr 1974; 19: 716–723.

    Article  Google Scholar 

  19. Hawkins RA, Phelps ME, Huang SC. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: Studies in human brain tumors with PET.J Cereb Blood Flow Metab 1986; 6: 170–183.

    PubMed  CAS  Google Scholar 

  20. Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation.Pharmacol Rev 1968; 20: 117–196.

    PubMed  CAS  Google Scholar 

  21. Eichling JO, Raichle ME, Grubb RL Jr, Ter-Pogossian MM. Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey.Circ Res 1974; 35: 358–364.

    PubMed  CAS  Google Scholar 

  22. Herseovitch P, Raichle ME, Kilbourn MR, Welch MJ. Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol.J Cereb Blood Flow Metab 1987; 7: 527–542.

    Google Scholar 

  23. Lammertsma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, et al.In vivo measurement of regional cerebral haematocrit using positron emission tomography.J Cereb Blood Flow Metab 1984; 4: 317–322.

    PubMed  CAS  Google Scholar 

  24. Yamauchi H, Fukuyama H, Nagahama Y, Katsumi Y, Okazawa H. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.Stroke 1998; 29: 98–103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H., Kanno, I., Iida, H. et al. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Ann Nucl Med 15, 111–116 (2001). https://doi.org/10.1007/BF02988600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02988600

Key words

Navigation